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PREFACE

THE ideas of Du Bois-Reymond's Infinitdrcalclll are of great and

growing importance in all branches of the theory of functions.

With the particular system of notation that he invented, it is, no

doubt, quite possible to dispense; but it can hardly be denied that

the notation is exceedingly useful, being clear, concise, and expressive

in a very high degree. In any case Du Bois-Reymond was a mathe-

matician of such power and originality that it would be a great pity if

so much of his best work were allowed to be forgotten.

There is, in Du Bois-Reymond's original memoirs, a good deal that

would not be accepted as conclusive by modern analysts. He is also

at times exceedingly obscure; his work would beyond doubt have

attracted much more attention had it not been for the somewhat

repugnant garb in which he was unfortunately wont to clothe his most

valuable ideas. I have therefore attempted, in the following pages,

to bring the Infinitdrcalcul up to date, stating explicitly and proving

carefully a number of general theorems the truth of which Du Bois-

Reymond seems to have tacitly assumed—I may instance in particular

the theorem of in. § 2.

I have to thank Messrs J. E. Littlewood and G. N. "Watson for

their kindness in reading the proof-sheets, and Mr J. Jackson for the

numerical results contained in Appendix III.

G. H. H.

Tkikity College,

April, 1910.
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INTRODUCTION.

1. The notions of the ' order of greatness ' or ' order of smallness

'

of a function f(n) of a positive integral variable n, when n is ' large,'

or of a function f(x) of a continuous variable x, when x is ' large ' or

'small' or 'nearly equal to a,' are of the greatest importance even in

the most elementary stages of mathematical analysis*. The student

soon learns that as x tends to infinity (x -* <x> ) then also a? -*- oo , and

moreover that x? tends to infinity more rapidly than x, i.e. that the

ratio a?/x tends to infinity as well ; and that x3 tends to infinity more

rapidly than a?, and so on indefinitely: and it is not long before he

begins to appreciate the idea of a ' scale of infinity ' (xn) formed by the

functions x, x2
, x3

, ..., xu, .... This scale he may supplement and to

some extent complete by the interpolation of fractional powers of x,

and, when he is familiar with the elements of the theory of the

logarithmic and exponential functions, of irrational powers : and so he

obtains a scale (x°-), where a is any positive number, formed by all

possible positive powers of x. He then learns that there are functions

whose rates of increase cannot be measured by any of the functions of

this scale: that log#, for example, tends to infinity more slowly, and e*

more rapidly, than any power of x; and that #/(log x) tends to infinity

more slowly than x, but more rapidly than any power of x less than

the first.

As we proceed further in analysis, and come into contact with its

most modern developments, such as the theory of Fourier's series,

the theory of integral functions, or the theory of singular points of

analytic functions, the importance of these ideas becomes greater and

* See for instance, my Course of pure mathematics, pp. 168 et seq., 183 et seq.,

344 et seq., 350.

H. 1



I INTRODUCTION

greater. It is the systematic study of them, the investigation of

general theorems concerning them and ready methods of handling

them, that is the subject of Paul du Bois-Reymond's Infinitwrcalcul

or 'calculus of infinities.'

2. The notion of the 'order' or the 'rate of increase' of a function

is essentially a relative one. If we wish to say that 'the rate of

increase oif(x) is so and so' all we can say is that it is greater than,

equal to, or less than that of some other function <j> (%).

Let us suppose that / and <£ are two functions of the continuous

variable x, defined for all values of x greater than a given value x .

Let us suppose further that f and <j> are positive, continuous, and

steadily increasing functions which tend to infinity with x; and let us

consider the ratio f/<f>. We must distinguish four cases:

(i) If fj<i>
-* co with x, we shall say that the rate of increase, or

simply the increase, of/ is greater than that of <j>, and shall write

f><t>.

(ii) Iffl<f>
-*- 0, we shall say that the increase of/ is less than that

of <j>, and write

f<4>.

(iii) If f/<t> remains, for all values of x however large, between two

fixed positive numbers 8, A, so that < 8 <f/<t> < A, we shall say that

the, increase of/ is equal to that of <f>, and write

It may happen, in this case, that f/4> actually tends to a definite

limit. If this is so, we shall write

fX4>.

Finally, if this limit is unity, we shall write

/~ <£•

When we can compare the increase of/ with that of some standard

function <£ by means of a relation of the type/X <£, we shall say that

4> measures, or simply is, the increase of/ Thus we shall say that

the increase of 1m? + x + 3 is a?.

It usually happens in applications that fj<j> is monotonic (i.e.

steadily increasing or steadily decreasing) as well as / and <£ them-

selves. It is clear that in this case//<£ must tend to infinity, or zero,

or to a positive limit : so that one of the three cases indicated above
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Fig. 1.

must occur, and we must have / >- <f> or /-< <£ or /X <£ (not merely

/X </>) We shall see in a moment that this is not true in general.

(iv) It may happen that fj<f> neither tends to infinity nor to zero,

nor remains between fixed positive limits.

Suppose, for example, that fa, fa are two continuous and increasing

functions such that fa >- fa. A glance at the

figure (Fig. 1) will probably show with sufficient

clearness how we can construct, by means of a

'staircase' of straight or curved lines, running

backwards and forwards between the graphs of

fa and fa, the graph of a steadily increasing

function / such ihaXf=fa for x=x\, x3 , ... and

f=fa for x=x2 , xt , .... Thenf/fa= l for

X— X±, X3 , ...,

but assumes for 3c = x
i
,xi , ... values which

decrease beyond all limit ; while f/fa = 1

for x=x2 , xt , ..., but assumes for x= xx , x3 , ...

values which increase beyond all limit ; unAfjfa

where
<f>

is a function such that fay~(f>y~fa,
as e.g. fa=>J(fafa), assumes both values which

increase beyond all limit and values which

decrease beyond all limit.

Later on (v. § 3) we shall meet with cases of this kind in which the

functions are defined by explicit analytical formulae.

3. If a positive constant S can be found such that /> 8<f> for all

sufficiently large values of x, we shall write

and if a positive constant A can be found such that f< A<£ for all

sufficiently large values of x, we shall write

/<<!>

If./>4> and/<«£, then/X<£.

It is however important to observe (i) that /> <£ is not logically

equivalent to the negation of /-< <£* and (ii) that it is not logically

equivalent to the alternative '/>-# or f^Cfa' Thus, in the example

discussed at the end of § 2, fa ^f>=fa, but no one of the relations

fa )-/, etc. holds. If however we know that one of the relations

f^fa /X 4>, f-K<l> must hold, then these various assertions are

logically equivalent.

* The relations /^0, f-K<t> are mutually exclusive but not exhaustive : f^(j>

implies the negation of/-<( </>, but the converse is not true.

1—2



4 INTRODUCTION

The reader will be able to prove without difficulty that the symbols

>-, X) -< satisfy the following theorems.

If ./><*>, *>*, then./>f

If/W, <t>y^, then./>^.

If /><*>, <t>>t, then/>V.

If/X<£, *X>f, then/Xf
If /></>, then/+4>X/

If ./><£, then/-<£X/

If/ > *, A y 4>i, then /+/, >4, + <h-

If /></>, /i X *,, then /+/i >* + *,.

If/X4>,/iXtf>„ thenZ+^X^ + ^i.

»/>-*, /i>*i, then^^^.
If/X «fc /i X </>., then jfc X <W>i-

Many other obvious results of the same character might be stated,

but these seem the most important. The reader will find it instructive

to state for himself a series of similar theorems involving also the

symbols X and ~.

4. So far we have supposed that the functions considered all tend

to infinity with x. There is nothing to prevent us from including also

the case in which/ or <f>
tends steadily to zero, or to a limit other than

zero. Thus we may write x >- 1, or w >- 1/x, or 1/x >- 1/x*. Bearing

this in mind the reader should frame a series of theorems similar to

those of § 3 but having reference to quotients instead of to sums or

products.

It is also convenient to extend our definitions so as to apply to

negative functions which tend steadily to — oo or to or to some other

limit. In such cases we make no distinction, when using the symbols

>-, -<, X, X, between the function and its modulus: thus we write

-x-^ — x2 or — 1/# -< 1, meaning thereby exactly the same as by

x -< x2 or 1/x -< 1. But /<*•>
<f>

is of course to be interpreted as a

statement about the actual functions and not about their moduli.

It will be well to state at this point, once for all, that all functions

referred to in this tract, from here onwards, are to be ^understood,

unless the contrary is expressly stated or obviously implied, to be

positive, continuous, and monotonic, increasing of course if they tend

to oo, and decreasing if they tend to 0. But it is sometimes con-
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venient to use our symbols even when this is not true of all the

functions concerned; to write, for example,

1 + sin x -< x, a? >- x sin x,

meaning by the first formula simply that
|
1 + sin x

\

jx -* 0. This

kind of use may clearly be extended even to complex functions

(e.g. e
1* -< x).

Again, we have so far confined our attention to functions of a

continuous variable x which tends to + oo . This case includes that

which is perhaps even more important in applications, that of functions

of the positive integral variable n : we have only to disregard values of

x other than integral values. Thus n ! >- w2
,
- 1/m -< n.

Finally, by putting x = — y, x = 1/y, or x = \j{y- a), we are led to

consider functions of a continuous variable y which tends to — oo or

or a : the reader will find no difficulty in extending the considerations

which precede to cases such as these.

In what follows we shall generally state and prove our theorems

only for the case with which we started, that of indefinitely increasing

functions of an indefinitely increasing continuous variable, and shall

leave to the reader the task of formulating the corresponding theorems

for the other cases. We shall in fact always adopt this course, except

on the rare occasions when there is some essential difference between

different cases.

5. There are some other symbols which we shall sometimes find it

convenient to use in special senses.

By OW
we shall denote a function f, otherwise unspecified, but such that

where K is a positive constant, and
<f>

a positive function of x: this

notation is due to Landau. Thus

x+l = 0{x), x=0(x*), smx=0(l).

We shall follow Borel in using the same letter K in a whole series

of inequalities to denote a positive constant, not necessarily the same

in all inequalities where it occurs. Thus

sin x < K, l2x + 1 < Kx, xm < Ke°.

If we use K thus in any finite number of inequalities which (like the

first two above) do not involve any variables other thaa x, or whatever

other variable we are primarily considering, then all the values ofK lie
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between certain absolutely fixed limits Kx and K2 (thus Kx might be

10-10 and Z"2 be 1010
). In this case all the ^'s satisfy <Kx <K<K2 ,

and every relation f<K$ might be replaced by /<K2 <f>,
and every

relation /> K<j> by />Kx <f>. But we shall also have occasion to use K
in equalities which (like the third above) involve a parameter (here m).

In this case K, though independent of x, is a function of rn. Suppose

that a, /?, ... are all the parameters which occur in this way in this

tract. Then if we give any special system of values to a, /3, ..., we

can determine Ku K2 as above. Thus all our K's satisfy

where Kx , K% are positive functions of «., /3, ... defined for any per-

missible set of values of those parameters. But Kx has zero for its

lower limit ; by choosing a, /?, ... appropriately we can make Kx as

small as we please—and, of course, K3 as large as we please*.

It is clear that the three assertions

f=0(4), \/\<K<j>, /<*
are precisely equivalent to one another.

When a function /possesses any property for all values of x greater

than some definite value (this value of course depending on the nature

of the particular property) we shall say that / possesses the property

for x>x . Thus

x > 100 (x> x ) , tf > 100 a? (x> x ) .

We shall use S to denote an arbitrarily small but fixed positive

number, and A to denote an arbitrarily great but likewise fixed positive

number. Thus
/<&<!> (x>x )

means 'however small S, we can find x so that /<S<£ for x>x ,'

i.e. means the same as /-< <£ ; and # > A/ (x > x ) means the same

:

and
(log ®y -< xs

means 'any power of log#, however great, tends to infinity more

slowly than any positive power of x, however small.'

Finally, we denote by e a function (of a variable or variables

indicated by the context or by a suffix) whose limit is zero when the

variable or variables are made to tend to infinity or to their limits

in the way we happen to be considering. Thus

/=*(l + «),/~*
are equivalent to one another.

* I am indebted to Mr Littlewood for the substance of these remarks.
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In order to become familiar with the use of the symbols denned in the

preceding sections the reader is advised to verify the following relations ; in

them Pm (x), Qn (x) denote polynomials whose degrees are m and n and whose
leading coefficients are positive :

Pm {x) > <?«(*) (m > «), Pm (x)^ Qn (x) (m=n),

Pm {x) ^ *-, Pm (x)/Qn (x)^*—

»

J(ax2+ 2bx+c)^x(a> 0), J(x+a) ~ <Jx,

J(x+a)-Jx ~ a/Zjx, J(x+ a) - J{x)= (1/s/x),

<F y x±, e?y e±x, ef y e**,

log#-<^, \ogPm{x)^\ogQn (x), log log Pm (.a;)~ log log §„(#),

x+ asinx<^ix, x(a+amx)^x (a > 1),

ea + ainxw 1) cosh .k ~ sinh #^ e1
,

3?*= {<&>), {\ogx)jx= 0{xS-\

l + 2+ --- + -~ log M>
l+2 + - + --log«^l,

P ofe ^ ,
[<" dt , f

x dt

log « log a?

"

II.

SCALES OF INFINITY IN GENERAL.

1. If we start from a function
<f>,

such that <£>-l, we can, in a

variety of ways, form a series of functions

such that the increase of each function is greater than that of its

predecessor. Such a sequence of functions we shall denote for short-

ness by (<£„)•

One obvious method is to take $„ = <f>

n
. Another is as follows :

If 4>y%, it is clear that
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and so <j}a (x) = <l><f>
(x)y<j>(x); similarly

<i>s {x) = <i><j>2 {x)y-^2 {x), and

so on*.

Thus the first method, with <j>=x, gives the scale x, a?, a?, ... or

(xn
) ; the second, with <j> = x*, gives the scale #2

, x\ x", . . . or (x?
n
).

These scales are enumerable scales, formed by a simple progression of

functions. We can also, of course, by replacing the integral parameter n by

a continuous parameter a, define scales containing a non-enumerable

multiplicity of functions : the simplest is (x
a
), where a is any positive number.

But such scales fill a subordinate role in the theory.

It is obvious that we can always insert a new term (and therefore,

of course, any number of new terms) in a scale at the beginning or

between any two terms : thus J4> (or 4>
a

> where a is any positive

number less than unity) has an increase less than that of any term

of the scale, and J (<t>n<t>n+i) or <£n0«+i nas an increase intermediate

between those of <f>n and <t>n+1 . A less obvious and far more important

theorem is the following

Theorem of Paul du Bois-Reymond. Given any ascending

scale of increasing functions 4>n, i.e. a series of functions such that

<£i -n $2 -\ $3 ~K ) we can always find, a function f which increases

more rapidly than any function of the scale, i.e. which satisfies the

relation <£„-</ for all values of n.

In view of the fundamental importance of this theorem we shall

give two entirely different proofs.

2. (i) We know that <£„+1 >- <j>n for all values of n, but this, of

course, does not necessarily imply that
<f>n+1 > <f>n for all values of x

and n in question t. We can, however, construct a new scale of

functions \j/n such that

(a) ij/n is identical with <j>n for all values of x from a certain value

x% onwards (xn , of course, depending upon n);

{b) 4>n+i ^ fn for all values of x and n.

For suppose that we have constructed such a scale up to its rath

term tyn . Then it is easy to see how to construct V«+i- Since

<t>n+iy<t>n, <£n~>/'>t> it follows that <}>n+1 >-^„, and so <t>n+1 > fn from a

certain value of x (say xn+1 ) onwards. For x 2= xn+1 we take i/vt-i=<K+i-

For x < xH+1 we give i/fTC+1 a value equal to the greater of the values of

* For some results as to the increase of such iterated functions see vn. § 2 (vi).

t <pn+i >- </>„ implies n+] >0„ for sufficiently large values of re, say for x>xn .

But xn may tend to 00 with n. Thus if <j>n= xnjn ! we have xn =n + l.
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<£n+i, "An- Then it is obvious that <^„+1 satisfies the conditions (a)

and (b).

Now let f(n) = ypn {n).

From f(n) we can deduce a continuous and increasing function f{x),

such that

&»(#) </(#) < "An+l^)

for re < # < to + 1, by joining the points (n, i/n (n)) by straight lines or

suitably chosen arcs of curves.

It is perhaps worth while to call attention explicitly to a small point that

has sometimes been overlooked (see, e.g.,

Borel, Zepons sur la theorie des fonctions,

p. 114 ; Legons sur les series a termes positifs,

p. 26). It is not always the case that the

use of straight lines will ensure

for x>n (see, for example, Fig. 2, where

the dotted line represents an appropriate

arc).

Then f/fn > fn+1ltn

for x>n+\, and so fy\j/n ; therefore

/>-<£„, and the theorem is proved.

The proof which precedes may be made
more general by taking /(»)= ^\ (m), where

X„ is an integer depending upon n and

tending steadily to infinity with n.

(ii) The second proof of Du Bois-Reymond's Theorem proceeds on

entirely different lines. We can always choose positive coefficients a„

so that
00

f(x) = ~2.aH \l>n (x)

is convergent for all values of x. This will certainly be the case, for

instance, if

l/a. = fc(l)<k(2)...fc,(n).

For then, if v is any integer greater than x, fn(x)<^n (n) for wSv,
and the series will certainly be convergent if

i I

„ fc(l)fc(2) ...ik_,(»-l)

is convergent, as is obviously the case.
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Also /(#)/<K (*) > a»+i «A»+i (*)/<A» (#)— *>,

so that/^-^,, for all values of n.

3. Suppose, e.^., that cj>n=xn
. If we restrict ourselves to values of x

greater than 1, we may take ^n =<£„=#*». The first method of construction

would naturally lead to

f=nn=enlo«n
,

or /= (Xn)", where \n is defined as at the end of § 2 (i), and each of these func-

tions has an increase greater than that of any power of n. The second method

gives
00 xn

/W =
f 112233. ..»»

It is known* that when x is large the order of magnitude of this function

is roughly the same as that of

g
£(loga:) 2/]ogloga;_

As a matter of fact it is by no means necessary, in general, in order to

ensure the convergence of the series by which f(x) is defined, to suppose that

an decreases so rapidly. It is very generally sufficient to suppose l/a„= $„(n)

:

this is always the case, for example, if tf>n (x)= {0 (x)}n, as the series

!<f>(x)Y

W>(»)J

is always convergent. This choice of an would, when <\>= x, lead to

/w-»©--vc?)-t.
But the simplest choice here is l/an=n\, when

rpfh

/<*) = *£-,««•-!;

it is naturally convenient to disregard the irrelevant term - 1.

4. We can always suppose, if we please, that f(x) is defined by a power

series 2 anx* convergent for all values of x, in virtue of a theorem of Poincare's J

which is of sufficient intrinsic interest to deserve a formal statement and

proof.

Given any continuous increasing function
<f>

(x), we can always find an

integral function f(x) (i.e. a function fix) defined by a power series 2anxn

convergent for all values of x) suck that f(x) y~ <$> (x).

The following simple proof is due to Borel§.

Let * (x) be any function (such as the square of <j>) such that * >- <j>. Take

* Messenger of Mathematics, vol. 34, p. 101.

t Lindelof, Acta Societatis Fennicae, t. 31, p. 41; LeEoy, Bulletin des Sciences

MatMmatiques, t. 24, p. 245.

X American Journal of Mathematics, vol. 14, p. 214.

§ Lecons sur les sSries a termes positifs, p. 27.
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an increasing sequence of numbers an such that an -» ol> , and another sequence

of numbers b- such that

ai < b
2 < <h < b3 < a3 <

and let /<>"©".
where vn is an integer and vn + 1 > i>„. This series is convergent for all values

of x ; for the »ith root of the nth. term is, for sufficiently large values of n, not

greater than x/bn , and so tends to zero. Now suppose an g x < an+ 1 ; then

/<*»(£)-

Since an > bn we can suppose vH so chosen that (i) vn is greater than any of

"u "2) •••> "n-i and (ii)

Then

and so /)>- <f>.

/(aO>*(aB+1 ) >*(*),

5. So far we have confined our attention to ascending scales, such

as x, a?, a?, ..., xw
,
... or (a/

1

) ; but it is obvious that we may consider

in a similar manner descending scales such as a; Jx, \Jx, ..., ^x, ...

or (%/x). It is very generally (though not always) true that if (<£„)

is an ascending scale, and \j/ denotes the function inverse to <j>, then

(i^n) is a descending scale.

If > $ for all values of x (or all values greater than some definite value),

then a glance at Fig. 3 is enough to show that if

yjf and yjr are the functions inverse to <j) and <j>,

then ifr <\jr for all values of x (or all values

greater than some definite value). We have only

to remember that the graph of yjr may be obtained

from that of <p by looking at the latter from a

different point of view (interchanging the roles of

x and y). But it is not true that <f>y~<j> involves

if? -< i/r. Thus e1 y~ e^/x. The function inverse

to e* is log x: the function inverse to e*\x is

obtained by solving the equation js=evjy with

respect to y. This equation gives

y= log x+ logy,

and it is easy to see that y ~ log .2;.

Given a scale of increasingfunctions ^>n suck that

Fig. 3.
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we can find an increasing function f such that
<t>n yfy 1 for all values

of n. The reader will find no difficulty in modifying the argument

of § 2 (i) so as to establish this proposition.

6. The following extensions of Du Bois-Reymond's Theorem

(and the corresponding theorem for descending scales) are due to

Hadamard*.

Given <t>i<<t>2<<t>3< <<t>n< -<*,

we can find f so that
<f>n -<./X * for all values of n.

Given & >-&>-&> ... >fn> •• >-*,

we can find f so that ^B >-/>-* for all values of n.

Given an ascending sequence (</>m) and a descending sequence (i/^)

such that <j>n -<\ tp for all values of n and p, we can find J so that

for all values of n and p.

To prove the first of these theorems we have only to observe that

*/&>*/*,>... yn>\^y ... y\,

and to construct a function F (as we can in virtue of the theorem

of § 5) which tends to infinity more slowly than any of the functions

*/£,. Then
f=*IF

is a function such as is required. Similarly for the second theorem.

The third is rather more difficult to prove.

In the first place, we may suppose that <j>n + 1 ><j>n for all values of x and

n: for if this is not so we can modify the

definitions of the functions <t>n as in § 2 (i).

Similarly we may suppose yj/p + 1 < yfrp for all

values of x and p.

Secondly, we may suppose that, if x is

fixed, <£„-»• <x> as n -»• oo
, and ifrp

-* as

p-a-cc . For if this is not true of the

functions given, we can replace them by

Hn <pn and Kptyp , where (Hn) is an increasing

sequence of constants, tending to oo with

n, and (Kp) a decreasing sequence of con-

stants whose limit as p -*- oo is zero.

Since \j/py <j>n but, for any given x, yjfp<(f>n

for sufficiently large values of «., it is clear

(see Fig. 4) that the curve y= typ intersects the curve y=<\>n for all sufficiently

large values of n (say for n ^ np).

* Acta Mathematica, t. 18, pp. 319 et seq.



SCALES OF INFINITY IN GENERAL 13

At this point we shall, in order to avoid unessential detail, introduce a
restrictive hypothesis which can be avoided by a slight modification of the

argument* but which does not seriously impair the generality of the result.

We shall assume that no curve y=typ intersects any curve y =</>„, in more
than one point; let us denote this point, if it exists, by Pn, p .

If p is fixed, P„
t p exists for n>np ; similarly, if n is fixed, Pn< p exists

for p>pn . And as either n or p increases, so do both the ordinate or the

abscissa of P^ „. The curve i/rp contains all the points P^ p for which p has
a fixed value: and y=<f>n contains all the points for which n has a fixed value.

It is clear that, in order to define a function / which tends to infinity

more rapidly than any <j>n and less rapidly than any ^p , all that we have to

do is to draw a curve, making everywhere a positive acute angle with each of

the axes of coordinates, and crossing all the curves y=(pn from below to

above, and all the curves y=^rp from above to below.

Choose a positive integer Np , corresponding to each value of p, such that

(i) Np > np and (ii) Np -*-co as^)-*-oo. Then PN v exists for each value of p.

And it is clear that we have only, to join the points PNl< \, PN„,i, Pn3 ,3,
• •• by

straight lines or other suitably chosen arcs of curves in order to obtain a

curve which fulfils our purpose. The theorem is therefore established.

7. Some very interesting considerations relating to scales of

infinity have been developed by Pincherlet.

We have denned />-<£ to mean //^^-oo, or, what is the same

thing,

log/- log <f>->-
oo (1).

We might equally well have defined />- <£ to mean

F(J)-F{+)+*> (2),

where F(x) is any function which tends steadily to infinity with x

{e.g. x, e°). Let us say that if (2) holds then

f>4> (F) (3),

so that />-<£ is equivalent to f>~<j> (log x). Similarly we define

/-<<£ (F) to mean that F(f)-F(<t>)+ -cx>, and fX4> (F) to

mean that F{f) — F(<f) remains between certain fixed limits. Thus

x + log xX «, oc + log x >- x (x),

x+l^x (x), x + 1 >- x (<F),

since ex+1 -ec = {e-l)ec'-»-<».

* See Hadamard's original paper quoted above.

t Memorie delta. Accademia delle Seienze di Bologna (ser. 4, t. 5, p. 739).
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It is clear that the more rapid the increase of F, the more likely

is it to discriminate between the rates of increase of two given

functions / and <£. More precisely, if

/><*> (F),

and F=FFU where Fx is any increasing function, then will

For

F(f) - F(4>) =F(f)F1 (/) - F(4>)F^) > \F{f) -F^F^) - •

.

8. The substance of the following theorems is due in part to

Pincherle and in part to Du Bois-Reymond *.

1. However rapid the increase of f as compared with that of <£,

we can so choose F thatf^X. <t> (F).

2. If f—<t> is positive for x > x , we can so choose F that

./>* (F).

3. If f— <t>
is monotonic and not negative for x > x , and

/X<£ (F), however great be the increase of F, then f=6 from a

certain value of x onwards.

(1) If f)>~ 4>, we may regard / as an increasing function of <£, say

f=<>W,
where d(x) )>- x. We can choose a constant g greater than 1, and then

choose X so that (x) > gx for x > X. Let a he any number greater

than X, and let

a1
= d(a), a2 =0(a1 ), as = 0(a2) , ....

Then (an) is an increasing sequence, and an -*- oo , since aH > g
u
a.

We can now construct an increasing function F such that

F(an)=\nK,

where K is a constant. Then if av^?kxtkav, av ^6(x) = av+1 , and

F{ 6{x)} - F(x) < F(ay+1) -F^) < K.

Accordingly F(f) - F(<t>) remains less than a constant, and so the

first theorem is established.

(2) Let /- <£ = X, so that X > 0. If X, as x increases, remains

greater than a constant K, then

so that we may take F(x) = e".

* Pincherle, I.e. ; Du Bois-Reymond, Math. Annalen, Bd. 8, S. 390 et seq.
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If it is not true that i = JT, ^ assumes values less than any

assignable positive number, as w-*-cc. Let X (%) be defined as the

lower limit of A (f) for £ S x. Then X tends steadily to zero as as-*- <x>

,

and X S: X. We may also regard X as a steadily decreasing function

of </>, say X = ix (<t>).

Let &(<}>) be an increasing function of <j> such that m^l/p, ^ot>- 1.

Then if

m(t)dt,

F(f)-F(<t>) = vtdt^\ wdt>p.(<t>)m(<l>)>l,
Jij, J<t>

and F(x) fulfils the requirement of theorem 2. The third theorem is

obviously a mere corollary of the second.

The reader will find it instructive to deduce or prove independently the

following three theorems, which are closely analogous to those which have

just been proved.

1. However great be the increase off at compared with that of <f>,
we can

determine an increasing function F such that F{f) X F(<f>).

2. Iff— 4> is positive for x > x , we can determine an increasing function

Fsuch that F(f) >- F(<t>).

3. If f—<}> is monotonic and not negative for x > x , and F(f) ]X[ F((j>),

however great the increase of F, then f=<f> from a certain value of x onwards.

To these he may add the theorem (analogous to that proved at the end of

§ 7) that />- <£ involves F(f) )>- F(tj)) if logics;)/ log .» is an increasing

function (a condition which may for practical purposes be replaced by

F>x).

9. Let us consider some examples of the theorems of the last paragraph.

(i) Letf=xm (m >1) and (f>=x. Then, following the argument of § 8 (1),

we have 8
((f>)

= <j>
m

. We may take

a=e, ax
= em, a2=em2, ..., an=em™, ...,

and we have to define F so that

F(emn)=%nK.

The most natural solution of this equation is

F(x)= K\og log#/21ogro.

And in fact

F (x»>) -F (x)

=

gj^ {log (m log x) - log log x)= \K,

so that i?»X* {F)-
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(ii) Letf=ex+e~ x
, <j>= ex. Following the argument of § 8 (2), we find

\=e-*= \, H.(4>)=ll<p,

and we may take rar (<£)= 1+a
(a > 0). This makes F & constant multiple of

#2
, and it is easy to verify that

if/fc>2.

(iii) The relation F(f)^F(<j>) is equivalent to /X# Q-OgF). Using

the result of (i) we see that F (of") X F (x) if F< log #. Similarly, using the

result of (ii), we see that F{ex+e~ x
) > F(e") if F > «**(* > 2).

10. Before leaving this part of our subject, let us observe that all

of the substance of §§ 1-6 of this section may be extended to the case

in which our symbols >-, etc., are defined by reference to an arbitrary

increasing function F. We leave it as an exercise to the reader to

effect these extensions.

III.

LOGARITHMICO-EXPONENTIAL SCALES.

1. The only scales of infinity that are of any practical importance

in analysis are those which may be constructed by means of the

logarithmic and exponential functions.

We have already seen (n. § 3) that

for any value of n however great. From this it follows that

log x -^ xyn

for any value of n*.

It is easy to deduce that

e^y^, e
e*>ee*\...,

log log x -< (log x)Vn, log log log x -< (log log x)lln
, ... .

* It was pointed out above (ii. § 5) that (p~)>-<t> does not necessarily involve ^-<[ f
(if/, \\i being the functions inverse to (j>, (f>).

But it does involve
ty < if/ for sufficiently

large values of x, and therefore ^=^y. Hence 0>-0n (for any n) involves f^,fn
(for any n) and therefore, if (\j/n) is a descending scale, as is in this case obvious,

\l/-^\j/n for any n. For proofs of the relations ex >- xa , log a; -< a;1 '™, proceeding on

different lines, see my Course of pure mathematics, pp. 345, 350.
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The repeated logarithmic and exponential functions are so im-

portant in this subject that it is worth while to adopt a notation for

them of a less cumbrous character. We shall write

liX=lx=logx, l2x = llx, l3x = ll^x, ...
,

e^x=ex=ex
, e^x=eex, e3x = ee2x

It is easy, with the aid of these functions, to write down any

number of ascending scales, each containing only functions whose

increase is greater than that of any function in any preceding scale

;

for example
a, Jj , ... , *</,..., ts , e , ... , e , ...

,

e*, e*, ... , e°
n

,
... ; e2 x, esx, ... , enx, ... .

In among the functions of these scales we can of course interpolate

new functions as freely as we like, using, for instance, such functions as

where a, /?, y, 8, c are any positive numbers ; and we can of course

construct non-enumerable (u. § 1) as well as enumerable scales.

Similarly we can construct any number of descending scales, each

composed of functions whose increase is less than that of any functions

in any preceding scale : for example

Ix, (lx)
lli

, ... ,
(lx)

1,n
, ...

; kx, l3x, ... , lnx, ...

.

Two special scales are of particularly fundamental importance ; the

'ascending scale

(E) x, ex, e2 x, e3x, ...

,

and the descending scale

\lj) Xj IX, l^Xj l3X) ... w

These scales mark the limits of all logarithmic and exponential

scales : it is of course, in virtue of the general theorems of n., possible

to define functions whose increase is more rapid than that of any enx

or slower than that of any lnx ; but, as we shall see in a moment,

this is not possible if we confine ourselves to functions defined by

a finite and explicit formula involving only the ordinary functional

symbols of elementary analysis.

2. We define a logarithmico-exponential /unction (shortly, an

L-function) as a real one-valued function defined, for all values of

x greater than some definite value, by a finite combination of the

ordinary algebraical symbols (viz. + , - , * ,
-=-

, V) and the functional

symbols log(...) and «'•', operating on the variable x and on real

constants.
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It is to be observed that the result of working out the value of the

function, by substituting x in the formula defining it, is to be real at all

stages of the work. It is important to exclude such a function

which, with a suitable interpretation of the roots, is equal to cos#.

Theorem. Any L-function is ultimately continuous, of constant

sign, and monotonia, and, as m-^-co, tends to <x> , or to zero or to some

other definite limit. Further, iff and <j> are L-functions, one or other

of the relations

holds between them.

We may classify Z-functions as follows, by a method due to

Liouville*. An Z-function is of order zero if it is purely algebraical;

of order 1 if the functional symbols /(••) and e{...) which occur

in it bear only on algebraical functions ; of order 2 if they bear only

on algebraical functions or Z-functions of order 1 ; and so on. Thus

^ — g log Be* 10* 1

is of order 3. As the results stated in the theorem are true of

algebraical functions, it is sufficient to prove that, if true of Z-

functions of order n - 1, they are true of Z-functions of order n.

Let us observe first that if / and
<f>

are Z-functions, so is f/<f>.

Hence the last part of the theorem is a mere corollary of the first

part. Again, the derivative of an Z-function of order n is an Z-

function of order n (or less). Hence it is enough to prove that, if

the results stated are true of Z-functions of order n - 1, then an

Zfunction of order n is ultimately continuous and of constant sign,

i.e. that it is continuous and cannot vanish for a series of values of x

increasing beyond limit. For, if this is true of any Z-function of

order n, it is true of the derivative of any such function ; and there-

fore the function itself is ultimately continuous and monotonic.

Now any Z-function of order n can be expressed in the form

fn = A{e^, C,., etfU, e.-C xl^-xiU
= A \Zl , Z2 , • •, Zq \ ,

say, where q = r + s + 1, the functions with suffix n — 1 are Z-functions

of order ra — 1, and A denotes an algebraical function: and there is

therefore an identical relation

F = M fl + JBi/T
x

+... +Mp = 0,

* See my tract The integration of functions of a single variable (No. 2 of this

series), pp. 5 et seq., where references to Liouville's original memoirs are given.
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where the coefficients are polynomials in zlt «2 > ••> V These poly-

nomials are comprised in the class of functions

M=S^^v (fr ™,)«> (Jr." )* ... (/t,?_>,

in which the k's are positive integers, the number of terms in the

summation is finite, and the functions with suffix n — 1 are again

i-functions of order n — 1. So also are

dM dMx dMp
dx ' dx ' "' dx '

and the discriminant ofF qua function of/„

.

Let us suppose our conclusions established in so far as relates to

functions of the type M. Then it follows by a well known theorem*

that fn is continuous, and, since fn = involves Mp = 0, that ./J, also is

ultimately of constant sign.

Hence it is enough to establish our conclusions for functions of the

type M. Let us call

«! + K2 + . . . + Kh

the degree of a term of M, and let us suppose that the greatest degree

of a term ofM is X, and that there are /u. terms of degree \ and that

the term printed in the expression ofM above is one of them.

In the first place it is obvious, from the form of M and the fact

that ey and ly are ultimately continuous when y is ultimately con-

tinuous and monotonic, that M is ultimately continuous. Again, if

M vanishes for values of x surpassing all limit, the same is true of

-3f/(p„_i eov-O,

and therefore, by Kolle's theorem t, of the derivative of the latter

function. But the reader will easily verify that when we differentiate,

and arrange the terms of the derivative in the same manner as those

of M, we obtain a function of the same form as M but containing at

most
i*.
- 1 terms of order A. And by repeating this process we clearly

arrive ultimately at a function of the form

Ar=2pM_ieo-„_1 ,

* If F (x, y) is a function of a; and y which vanishes for x = a, y = b, and has

derivatives ^- , =— continuous about (a, b), and if =- does not vanish for x= a,
ax ay ay

y = b, then there is a unique continuous function y which is equal to 6 when x= a,

and satisfies the equation F (x, y) = identically. See, e.g., W. H. Young, Proc.

Lond. Math. Soc, vol. 7, pp. b97 et seq.

t If a function possesses a derivative for all values of its argument, the

derivative must have at least one root between any two roots of the function

itself.

2—2
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in which there are no factors of the form /tw_1 , and which must vanish

for a sequence of values of x surpassing all limit. Hence it is

sufficient for our purpose to prove that this is impossible.

Let the number of terms in N be -a. Then

^{iV/(p*-i«<r»-x)}

must (for reasons similar to those advanced above) vanish for values

of x surpassing all limit. But when we differentiate, and arrange

the terms of the derivative in the same manner as those of N, we

are left with a function of the same form as N, but containing only

us - 1 terms. And it is clear that a repetition of this process leads to

the conclusion that a function of the type

Pn-ieo-n-i

vanishes for values of x surpassing all limit, which is ex hypothesi

untrue. Hence the theorem is established.

3. The proof just given, it may be observed, does not in any way

depend upon the fact that the symbols of algebraical functionality,

admitted into the definition of i/-functions, are of an explicit character.

We might admit such functions as

e2 J(ly),

where y
5 + y — x = 0. But the case contemplated in the definition

seems to be the only one of any interest.

Another interesting theorem is : if.f is any L-funetion, we can find

an integer k such that

f< ekx;

and, iff )~ 1 , we can find h so that

f> Ikx:

that is to say, an L-function cannot increase more rapidly than any

exponential, or more slowly than any logarithm.

More precisely, an i-function of order n cannot satisfy/>- en (aj
A
)

or 1 -</-< (lnx)
s

. The first part of this result is easily established;

the second appears to require a more elaborate proof.

4. Let f and <£ be any two L-functions which tend to infinity

with x, and let a be any positive number. Then one of the three

relations

J>4>\ fX<t>a, J<<t>a

must hold between / and <£ ; and the second can hold for at most one
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value of a. If the first holds for any a it holds for any smaller a ; and

if the last holds for any a it holds for any greater a.

Then there are three possibilities. Either the first relation holds

for every a ; then

Or the third holds for every <*; then

Or the first holds for some values of a and the third for others ; and

then there is a value a of a which divides the two classes of values of a,

and we may write

where <£~*-<./i -< <£
s

. We shall find this result very useful in the

sequel.

IV.

SPECIAL PROBLEMS CONNECTED WITH LOGARITHMICO-
EXPONENTIAL SCALES.

1. The functions er (laxy: We have agreed to express the fact that,

however large be a and however small be /3, xa has an increase less than that

of e
x*, by

x^^e^ (1)*.

Let us endeavour to find a function/ such that

x*<f<ex*

(2).

If <£i >-
<f>2 , e*> y e** (II. § 8). Thus (2) will certainly be satisfied if

logx^logf^afi.

Hence a solution of our problem is given by

^= e
(loga;)1+8

_

* Such a relation as

might at first sight appear to afford more information than (1) : but

zA ' (lx)*> -< *A\ S^ (Ix)

~

A
» >- Xs'.

where A,', S2
' are any positive numbers greater than A

x
and less than S2 respec-

tively. Hence our relation really expresses no more than (1).
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Similarly we can prove that

/=e(log»)>-s

satisfies (log #)
A </<*?.

It will be convenient to write

e x = l x = x,

and then we have the relations

«o(^7<ei(^)1_J<(«o(^M«i(^)
1+8 <«i(^)v

(3 ).

where y denotes any positive number*.

Let us now consider the functions

f=er (l„xT, f^e^xT,
where p, p! are positive and not equal to 1. If ?•=/,/>/' or/-</' according

as s < *' or s > «'. If s= s', the same relations hold according as r > r' or r < /.

If r= r' and «=«', then/>/' or/</' according as p. > p.' or p. < /*'. Leaving

these cases aside, suppose s>s',s-n'= <r > 0. Putting £„-x=y,we obtain

f=er (l„yT, f=er
.y»'.

If r<r' it is clear that/ -< <£. If r > r\ let r-V=p; then

if p > 1 the symbol ^ may be replaced by ~. If o- > p, lrf <. lrf and so

/-</'. If o- < p, fyf- If <r= p, />/' or /</' according as p. > 1 or

u < 1. Thus
/>/' (r-s>r'-s'), f<f {r-s<f-s'),

while iir-s=r'-s',fyf or/-</' according as p > 1 or p. < 1, p. being the

exponent of the logarithm of higher order which occurs in /or/'.

From this it follows that

... e^hxfS < 4,&*)»E(i*)» -< «, (W1+{ < e2(^)
1+s < ...

... < ezihx)
1 -* < ei(W S

-< eo{to*)y= *y < «i(W"*-< -
... •< ^(W"* -< e2(W_S

-< «i(Ws«fl- < e2 (?^)
1+s < ...

These relations enable us to interpolate to any extent among what we may

call the fundamental logarithmico-exponential orders of infinity, viz. {hx)"1,

xy, ekxy . Thus

and ee , e
e

, ...,

are two scales, the first rising from above x*, the second falling from below

exy , and never overlapping.

These scales, and the analogous scales which can be interpolated between

other pairs of the fundamental logarithmico-exponential orders, possess

* Here S, as usual, denotes ' any positive number however small.' Of course, in

using the index 1 - S, it is tacitly implied that S< 1.
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another interesting property. The two scales written above cover up (to put

it roughly) the whole interval between xy and ex 1
, so far as L-functions (in. § 2)

are concerned : that is to say, it is impossible that an X-function / should

satisfy

/> er (lrx)
1+

\ (every r),

f<er + i(lrX)
1~ S

,
(every r);

and the corresponding pairs of scales lying between (h-nxY and (l%x)y , or

between ekxy and ek+1 x7, possess a similar property. This property is

analogous to that possessed (in. § 3) by the scales (lT x), (erx) ; viz. that no

X-function / can satisfy fy~erx, or 1 -</-<(£,.#, for all values of r. A little

consideration is all that is needed to render this theorem plausible : to

attempt to carry out the details of a formal proof would occupy more space

than we can afford.

2. (i) Compare the rates of increase of

These functions are the same as e{(lxfllx}, e{(lx)
l ~"}. If/i+ i»>l,/>-$;

if>+ v<l,/-<4>.

(ii) Compare the rates of increase of

f=x"(lx)°>,
<t>
= eMkcmix)P

} (a,A,a>0).

Heref=e(alx+ Mix). If a< 1, then /> 0; if a > 1, then /< (j>. Ifa= I T

/3<0, then/><£; if a= l, /3 > 0, then/-<<£. If a =l, £=0, a > A, then

fy<f>; if a= l, j3=0, a<A, then /< <£. If a =l, £=0, a= A, then/>0
if 6>0 and/-<0 if 6<0. Finally if a= 1, /3=0, a= A, 6= the two functions

are identical.

(iii) Compare the increase of f=x^'^
1+ 'l'\ where <j> is a function of x such

' that <j>y-l, with that of xy.

It is clear thatf^x, but/>- xy for any value of y less than unity. For,

if x is large enough, <p > n, where n is any positive integer, and so

f>xn'(1+n\

Againf=xe- lx^1+^\ and so, if
<f,

-< Ix, f -< x : but if X Ix,/X # ; while if

<£ )>- tr, /~ x.

3. Successive approximations to a logarithmico-exponential func-

tion. Consider such a function as

If we omit one or more of the parts of the expression of / we obtain another

function whose increase differs more or less widely from that of /. The
question arises as to which parts are of the greatest and which of the least

importance ; i.e. as to which are the parts whose omission affects the increase

of/ most or least fundamentally.

Taking logarithms we find

lf=ilx+J(lx)(l2xye^V>
x^ l'*y2 + 2l

2
x (a),
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the three terms being arranged in order of importance. Again

where (i. § 5) in each of the last equations <• denotes a function (not the

same function) which tends to zero as x-*~a>. If we neglect this term in

each of them in turn we deduce the approximations

(1) /= *, (2) f=Jx.

By neglecting the last term in the equation (a) we obtain the much closer

approximation

(6) f=J{x)e^>^hm^
In order to obtain a more complete series of approximations to / we must

replace the equation (a) by a series of approximate equations. Now if

<$>= J(lx)(l^ye^x)Mi

we have l<\>=% l
2
x+ J{12 x) (l3xf+ 2l

3
x,

l
i 4> — hx —^ + f

> h<f>= hx+e.

Hence we obtain (0) <f>
= lx, (3) <j>=*/(lx), and (5) <j>= J(lx)e^&xW>xy as

approximations to the increase of
<f>

: of these, however, the first is valueless,

inasmuch as it would make <j> preponderate over the first term on the right

hand side of (a).

A similar argument, applied to the function e^^ x^lsX
^, leads us to inter-

polate (4) <j)= s[(lx)e
s/(-l*x) between (3) and (5). We can now, by adopting

a series of approximate forms of the equation (a), deduce a complete system

of closer and closer approximations to the increase of/, viz.

(1)*, (2)V*, (3) v/(*)^
(te)

, (4) V(*W(fa)eV<W ,

(5)
^x)*JM^hX)(h *]

\ (6) V(*)^H^Vfta;)fta;)a
.

This order corresponds exactly to the order of importance of the various parts

of the expression of/.

4. Legitimate and illegitimate forms of approximation to a log-

arithmico-exponential function. In applications of this theory, such as

occur, for instance, in the theory of integral functions, we are continually

meeting such equations as

/=(! + *) ^, /=# + ')*' /=^+£
, <«>0) (1).

It is important to have clear ideas as to the degree of accuracy of such

representations of /. The simplest method is to take logarithms repeatedly,

as in § 3 above.

In the first example the term e does not affect the increase of/: we have

f<^jex
a

. This is not true in the second ; but If ~#a
, so that the term e does

not affect the increase of If; while in the third this is not true, though Ufot a.

Of the three formulae the first gives the most, and the last the least, informa-

tion as to the increase of/ (see also vn. § 3).
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Such a formula as

/=«(! + •)»*
(2)

would not be a legitimate form of approximation at all. For the factor e (ex
a
)

which is not completely specified may well be far more important than the

explicitly expressed factor x: we might for example have e =x~P, where

< |3 < a, in which case e(fX
a
)-is more important than any power of x. Thus

(2) does not really convey more information than the second equation (1),

and to use it would involve a logical error similar to that involved in saying

that the sun's distance is 92,713,600 miles, with a probable error of some

100,000 miles.

5. Attempts to represent orders of infinity by symbols. It is

natural to try to devise some simple method of representing orders of

infinity by symbols which can be manipulated according to laws resembling

as far as possible those of ordinary algebra. Thus Thomae* has proposed

to represent the order of infinity of f= xa (lx)
a

' (l2 x)
a
^... by

where the symbols li,lt , ... are to be regarded as new units. It is clear that

these units cannot, in relation to one another, obey the Axiom of Archimedes J

:

however great n, rd2 cannot be as great as llt nor idx as great as 1.

The consideration of a few simple cases is enough to show that any such

notation, if it is to be of any use, must obey the following laws :

(i) if/>0, O(/+0) = O/;

(ii) (/<£)= 0f+04>;

(iii) {/ (0)}= Of xO<t>.

And Pincherle§ has pointed out that these laws are in any case in-

consistent with the maintenance of the laws of algebra in their entirety.

Thus if

Ox=l, Olx=\,

we have, by (iii), 0llx=\\ and by (iii) and (ii),

0l(xlx)=\(l+\)=\+X'
;

and on the other hand, by (i),

01 {xlx)= 0(lx+ llx) = X.

Pincherle has suggested another system of notation ; but the best yet

formulated is Borel's||. Borel preserves the three laws (i), (ii), (iii), the

* Elementare Theorie der analytischen Funktionen, S. 112.

t The reader will not confuse this use of the symbol O (which does not extend

beyond this paragraph) with that explained in I. § 5.

J 'If x>y>Q, we can find an integer n such that ny>x.'

§ I.e. (see p. 13 above).

||
Legovs sur les series a termes positifs, pp. 35 et seq. ; for further information

see his recently published Lecons sur la Morie de la croissance, pp. 14 et seq.
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commutative law of addition, and the associative law of multiplication. But

multiplication is no longer commutative, and only distributive on one side*.

He would denote the orders of

e*#» xn (lxy, e2*, e*
2

, e«*, e^ lx
,

\x,

P ,1111
by a+n, n+-, 2. to, a.z, a', 00.5.-, -•„•»•

But little application, however, has yet been found for any such system of

notation ; and the whole matter appears to be rather of the nature of

a mathematical curiosity.

FUNCTIONS WHICH DO NOT CONFORM TO ANY LOGARITHMICO-
EXPONENTIAL SCALE.

1. We saw in 1. (§ 2) that, given two increasing functions
<f> and \j/

($ >- if/), we can always construct an increasing function/which is, for

an infinity of values of x increasing beyond all limit, of the order of

4>, and for another infinity of values of x of the order of i/r. The actual

construction of such functions by means of explicit formulae we left till

later. We shall now consider the matter more in detail, with special

reference to the case in which
<f>
and \fi are Z-functions.

We shall say that / is an irregularly increasing function (fonctim

a croissance irregulilre) if we can find two X-functions
<f>
and ij/(<j>y>j/)

such that

./><£ (x = xu X2 , ...), /$f (x = Xl\ Xt, ...),

xu x2 ,
... and x-l, x2

', ... being any two indefinitely increasing sequences

of values of x. We shall also say that ' the increase of/ is irregular

'

and that 'the logarithmico-exponential scales are inapplicable to/.'

The phrase 'fonction & croissance irregul&re ' has been defined by various

writers in various senses. Borelt originally defined / to be a croissance

rigvMere if

<r </<ex
, {x>x ),

or in other words if llf<**> alx or Uf^ Ix.

This definition was of course designed to meet the particular needs of the

* (a + b) c= ac + be, but in general a (b + c)4=ab + ac.

t Lecons sur les fonctions enti&res, p. 107.
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theory of integral functions : and has been made more precise by Boutroux

and Lindelof*, who use inequalities of the form

e
x°-(lx)

ai ... (/**)»*-* < y< ^(tep ... {lkxT«
+
\

All functions which are not A croistance re'guliere for these writers are

included in our class of irregularly increasing functions.

2. The logarithmico-exponential scales may fail to give a complete

account of the increase of a function in two different ways. The

function may be of irregular increase, as explained above, and the

scales inapplicable : on the other hand they may be, not inapplicable,

but insufficient (en defaut). That is to say, although the increase of

the function does not oscillate from that of one Z-function to that of

another, there may be no ^-function capable of measuring it. That

such functions exist follows at once from the general theorems of n.

Thus we can define a function which tends to infinity more rapidly

than any erx, or more slowly than any lrx: and the increase of such a

function is more rapid or slower than that of any i/-function (in. § 2).

Or again, we can (n. § 6) define a function whose increase is greater

than that of er (lrw)
1+s (any r) and less than that of er+i (lr%Y~

& (any r)

;

and the increase of such a function (iv. § 1) cannot be equal to that, of

any Z-function.

We shall now discuss some actual examples of functions for which

the logarithmico-exponential scales are inapplicable or insufficient.

3. Irregularly increasing functions. Functions whose in-

crease is irregular may be constructed in a variety of ways.

(i) Pringsheimt has used, in connection with the theory of the con-

vergence of series, functions of an integral variable n whose increase is

irregular. A simple example of such a function is

/M=10[<
lo&°*> ]/T (r>l),

where \x\ denotes the integral part of x. It is easily proved, for instance,

when r=2, that the increase of fin) varies between that of n and that of

n. i01-2v/(logl ° M'. We shall not do more than mention functions of this type.

They are defined, most naturally, as functions of an integral variable n : if we
extend the definition to the continuous variable, the resulting function is

discontinuous. The definition can of course be modified so as to give a

* Boutroux, Acta Hathematica, t. 28, p. 97 ; Lindelof, Acta Societatis

Fennicae, t. 31, p. 1. See also Blumenthal, Principes de la theorie des fonctions

entieres d'ordre infini.

t See Math. Annalen, Bd. 35, S. 347 et seq. and Miinchener Sitzung&berichte, Bd.

26, S. 605 et seq.
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continuous function of x with substantially the same properties; but it is

not easy to effect this by a simple, natural, and explicit formula.

(ii) A more natural type of function is given by

/=<pcos2 + ^sin2
0,

where cp, ijr, 8 are increasing Z-functions. We have to consider what

conditions <j>, \fr, 8 must satisfy in order that / may increase steadily with x.

That its increase oscillates between that of <j> and that of i^ is obvious.

Differentiating,

/'= 0' cos2 8+ 1|/ sin2 8+ 2 (^ - <p) 8' cos 8 sin 8.

Suppose (f>y-yj/: and let us assume that (as will be proved in the next

chapter) relations between Z-functions involving the symbols )>-, etc. may be

differentiated and integrated. The condition that /' should always be

positive is <p'yjr' >- (<p — ifr)
2 6'2 or cp'ijr' ]>- (j^d

12
. A fortiori, since <p' >- 1^', we

must have <p' )>- cpS
1

, or log (j>>- 8. Thus / is certainly monotonic if

0>^, log 0>0, V>cp2 8'2/<p'.

If, e.g., 8 = x, we require log <p y~ x, which is satisfied, for example, if

^> — xa e
x

(p > 1). It is convenient to write a + p-l for u. Then, since

<p'~ p^
a+p-1

eic
, we must have ^' >- xa e

xP
; and so

as is easily seen on integrating by parts. Thus we may take ^= xrex ,

where a — 2p+ 2 < /3 < a. Changing our notation a little we see that

/=(^+{
cos2a;+^- s

sin2^)e:c
'>

is monotonic if 0<8<p — 1; and the increase of/ obviously oscillates

between that of xy+s ex and that of xy
~ s

e
x

. Similarly it may be shown

that

/= (e**cos2
tf+ e

vx
sin2 a;)ee

!';

is monotonic if v < p,<v+ 2*; and again the increase of/ is irregular.

4. Irregularly increasing functions {continued). We shall

now consider two more general and more important methods for the

construction of irregularly increasing functions.

(iii) Borelt has shown how, by means of power series, we may
define functions which increase steadily with x, while their increase

oscillates to an arbitrary extent.

* Cf. Messenger of Mathematics, vol. 31, p. 1.

t See Borel, Lemons sur lea fonctions entieres, pp. 120 et seq. ; Lecons sur les

series a, termes positifs, pp. 32 et seq. Borel considers the cases only in which

f=ex
, tp= ex or e^ ; but his method is obviously of general application. The

proof here given is however more general and much simpler.
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Let <£ (x) = %anx
n

, ^ (» = 2 bnx"

be two integral functions of x with positive coefficients ; suppose also

<£ >- </f. The increase of <£ and ij/ may be as large as we like (n. § 4)

;

but in each case it must be greater than that of any power of x.

Then we can define a function

f(x) = %crlx
n

,

where every cn is equal either to an or to bn , in such a way that, for an

infinity of values xv whose limit is infinity, we have /~ <£, and for a

similar infinity of values xj we have/~ f*.
Let (17,,) be a sequence of decreasing positive numbers whose limit is

zero. Take a positive number x such that <j> (x ) > 1, <A (x ) > 1, and a

number x± greater than x . When xx is fixed we can choose nx so that

2 anx1

n < I% , 2 bnx-l> <\y\u

and so, if cn is either of an , bn (however the selection may be made for

different values of n),

oo co

2 cnx? < 2 (an + bn) x? < fr/j.

For ^ n < n-y we take cn = an . Then
oo

I
/(#i) -<t>(x1)\<% (an + c„) xf < Vi

,

and so, since
<t> {x^j > 1,

i'I ,. i

<% (!)
fM-

1
i>(x1)

Now let x2 be a number greater than x-i ; we can suppose x2 chosen

so that

Q& a„#2") /<M^) < H, ("s bnx./jU(x,)<^rh .

When x2 is fixed we can choose n2 (n.2 > n^} so that
GO 00

2a„a72
B < i%, 26K a;2

" < ^%.

For % S n < n2 we take c„ = bn . And, however c„ be chosen for

(iS«], we have
00 00

2c„#2
M < 2 (an + bn) x2

n < f%.

* By '/~0 for an infinity of values x„' we mean of course that fl<f>
-* 1 as a;-»-ao

through this particular sequence of values.
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Also

\f{xi)-i\>(xl)\< 2 anx2
n + 2 bna£ +

,

2cnxf + '2
lbnxi

n

n2 nz

< %t]^ (x2) + f% < Vltj/ (#2),

and so /^) -^'<^
(2).<^2)

It is plain that, by a repetition of this process, we can find a

sequence xu x2 , x3 , ... whose limit is infinity, so that

-Vs (3),
f_M_

x V* (4),

and our conclusion is thus established. Incidentally we may remark

that not only /itself, but all its derivatives also, are increasing and

continuous.

It is clear that, if we were given any number of integral functions

fa, <£2 , ..., fa, with positive coefficients, we could define / so that

f/fa-^-1, as x -»- oo through a suitably chosen sequence of values, for

each of the functions fa.

(iv) Power series with gaps. There is another method of constructing

irregularly increasing functions by means of power series which, though less

general theoretically than that explained above, is in some ways more

interesting, inasmuch as the functions to which it leads us are of a far

simpler and more natural type. We shall confine ourselves here to ex-

plaining in general terms the general principle of the method and indicating

a few simple examples*.

Let fa[x) = 2anxn (1)

be an integral function with positive coefficients: suppose, to fix our ideas,

that the coefficients decrease steadily as n increases. Suppose also that, for

a particular value of x,

& (x) = avx
v

is the greatest term of the series. In general one term will be the greatest,

but for certain particular values of x, say |1) £2 . • ••> two consecutive terms

will be equal t.

* For fuller details see Hardy, Proc. Land. Math. Soc., vol. 2, pp. 332 et seq.

;

Messenger of Mathematics, vol. 39, p. 28 : Borel, Bendiconti del Gircolo Matematico

di Palermo, t. 23, p. 320; Lecons sur la theorie de la croissance, pp. Ill et seq.:

Blurnenthal, Principes de la theorie des fonctions entieres d'ordre infini, pp. 5 et seq.

t We leave aside the possibility, which obviously applies only to particular

cases, of more than two terms being equal.
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As x increases, the index v of cr (x) increases, and tends to oo with n: it

thus defines a function v (x) such that

v(x) = i, (£i<x<£i + 1 ).

At the point of discontinuity £,, where v(x) jumps from i — 1 to i, we may
assign to it the value i. When v is thus defined for all values of x, m (x)

defines a function of x which tends continuously and steadily to oo with x.

The increase of
<fr

is obviously at least as great as that of vs ; it may be

expected to be greater: but it is, in ordinary cases, not so very much
greater—the increase of tss gives a very fair approximation to that of <j>.

Thus, if <£ (x) = ex, an = l/n\, and f4
= i. And for i< x < i + 1 we have

V(2jti) ^ ^ 'V(2Tt)

Thus <p y~ nr, but log$ ~ logo?: the difference between the increases of
<f>

and w is small compared with the increases themselves.

Nowlet f(x) = Saxi„)x
xW

(2),

where ^ (n) )>- n : and let p (x) be the function related to / as or (.c) is to <j>.

The laws of increase of or (x) and of p (x) may be expected to be very much
the same, for p (x) is defined by a selection from some of the terms from all

of which 537 (x) was selected. The increase of f{x) clearly cannot be greater,

and may be expected to be less, than that of <\>{x): but it cannot be less than

that of p (x). Hence we may expect relations of the type

Also it is clear that, the more rapidly we suppose ^ (n) to increase, the lower

in the gap between sr and <j) will / sink, and that, if we suppose % to increase

with sufficient rapidity, we may expect to find m X/j so that the increase of

/ is completely dominated by that of one (variable) term.

We then shall have

where N(jc) is a function of x which assumes successively each of a series of

integral values Nt , so that

N(x) = Ni, {Xi^x<xi+l)\.

But, as x increases from xi to x
i + 1 , the order of aN.xNi, considered as a

function of x, may vary considerably, since Nt , though depending on the

interval (xt , xi + 1), does not depend on the particular position of x in that

interval. And so it is clear that we are in this way likely to be led to

functions whose increase is irregular in the sense explained in § 1.

* The second pair of inequalities are an immediate consequence of Stirling's

theorem, that i! ~ii+ !s e-ijtfw).

t We must have p^&, P^,f> ar=^0i f=K<P-

X Ni, Xf are, of course, not the same as v
( , %i

above.
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Suppose, for example, that an = n~ n
, so that

Here Jj = ill+ - ~ ei,

and it is easily shown that w (x)X ex/e.

Now let x (») = 2n, so that

fix) = 2,
—- = 2vn

say. Then »i_ 1= t>i if « = 2i + 1
, so that xt

=2i + 1 and ^ = 2* for

2 i + 1 < #< 2i + 2
.

For this range of values of #, vt is the greatest term; when x — 2i+z, »4
= »i + 1 .

Further, it is not difficult to show that /(#) Xf> (#) = »< i
the behaviour of

fix) being dominated by that of its greatest termt.

If we put x=2i+1+e , where < 8 < 1, we find

/(^)Xn = 2
(1+(,)2i=2";

,

where a = (l + 6)2~ 1 ~ e
. This is a maximum when l + = l/(log2), when it

is equal to l/(elog2) = -53.... Hence the increase of f{x) oscillates (roughly)

between that of 2 5
'

6-x and $x + 1
\.

Similar considerations may be applied to the more general series

&««"

where a is an integer greater than unity. This series is derived from 2 (x/n
a
)
n
,

where a = (log 6)/(log a), by taking % (») = »"• Another example of an irregu-

larly increasing function defined in a similar manner is

x™
%

the increase of which oscillates between the increases of ex/Jx and

These examples are of course typical of a large class of functions.

Before we leave this subject let us call attention to a point of considerable

* See ii. § 3, and the references given in the footnote to p. 10. We might

have taken $ (x) = ex , but our choice of
<f>

(x) leads to the simplest examples.

t We may say roughly that in general f <^> p—that is to say, fjp -» 1 as x -*• oo

through any sequence of values not falling inside any of certain intervals sur-

rounding the values |s . At a point ({ , fjp is nearly equal to 2.

% The latter function is multiplied by 2, as there are two equal terms when
= or 1.

§ Messenger of Mathematics, vol. 39, p. 28.



LOGARITHMICO-EXPONENTIAL SCALES 33

interest suggested by the foregoing examples. In forming the logarithmico-

exponential scales we started from the scale x, a^, ... and then formed the

function 2 — . If we had started, as wo equally well might have done, from

the scale a?, a-
4
, up, ... (cf. n. § 1), we should have been led to choose, as a

function transcending this scale, not e* but some such function as

(2-)!-

This is one of the irregularly increasing functions of the type just considered.

Had we proceeded thus, and completed the construction of our fundamental

scales on similar lines, our fundamental functions would for the most part

have been among those which do not conform to the logarithmico-exponential

scale, and it would have been the functions of that scale that would have

appeared as irregularly increasing functions.

5. Functions which transcend the logarithmico-expon-

ential scales. We turn our attention now to functions for which

the logarithmico-exponential scales are not inapplicable but insufficient

(§ 2). Of the existence of such functions we are already assured.

Thus a function which assumes the values «i(l), e2 (2), ..., ev {v), ... for

te = l, 2, ..., v, ... certainly has an increase greater than that of any

logarithmico-exponential function. No such function, however, has as

yet made its appearance naturally in analysis; it will be sufficient,

therefore, to mention two examples of such functions which transcend

the logarithmico-exponential scales in quite different manners.

(i) The series 2^
has obviously, if it converges, an increase greater than that of any

ev (x). Suppose k - 1 ^ x < k. Then

£&(#). eu+vjx) __
ek+v (k) ^ ek+v (k)

eic (k) ' ek+v (k + v) ek+v (k + v) ek+v (k + 1
)

"

But, by the Mean Value Theorem,

ek+v (k + 1) = ek+v (k) + ek+v (y) %+„-! (y) ... e2 (y)

e

x (y),

where y is some number between k and k + 1; and so

ek+v (k + 1) > 6k+v (k) ek+v-i (k) . . . ^ (k).

It follows that the terms of the series

| e,(x)

v=u ev (v)

are less than those of the series

"
1

+
v=i «i (*) «2 {k) ... eji+v-i (k)

'

h. 3
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which is plainly convergent, and therefore that the original series is

convergent; and it is obviously only one of a large class of series

possessing similar properties.

(ii) Let
(f>

(x) be an increasing function such that </> (0) > 0,
<f>

)- x. We
can define an increasing function /, which satisfies the equation

fn*)-4><*) a),
as follows.

Draw the curves y=x,y= <t>ix) (Fig. 5). Take Q arbitrarily on OP (see

the figure); draw Qq^ parallel

to OX and complete the rect-

angle §„§!. Join § , §i by any

continuous arc everywhere in-

clined at an acute angle to the

axes. On this arc take any

point Q; draw QP, QR parallel

to the axes, and complete the

rectangle QQ'. As Q moves

from Q to Qu Q' moves from

Q\ to Q2 , say. As we con-

structed Q' from Q, so we can

construct Q" from §': proceed-

ing thus we define a continuous Q,

curve QoQiQiQs--- correspond-

ing to a continuous and in-

creasing function f{x). Then ° x

f{x) satisfies (1). For if y=f (as)
Fio. 5.

is the ordinate of Q, it is clear that ff(x) is the ordinate of Q\ which is equal

to
(f>

[x), the ordinate of P.

Let us write

/(*) =/iW, <t> (*) =/i/i (•) =/• (*), fih (*) = <*>/ (*) -/» (*),

and so on, so that §„ is the point /n (0), /n+ i(0). Also let ty be the function

inverse to <£, and write \^2 for \lryfr, and so on. Finally, let the equation of

Q Qi be 6ix, y)= 0. Then it is easy to see that the equations of (^fei + i

and of @2n + i#2n + 2 are respectively

«{+•(*), +.&)} = <>. 5{fB + 1 (y), ^n (tf)}=0.

Suppose for example that $(*•)=«*, OQ = a <1, and that QoQi is the

straight line y= a+ ax, where a=(l-a)/a. Then the equations of @2n$2n+i
and of §2» + i§2n + 2are

or y= e»-i{«°(Z»-iaO
a
}, y=«„{e-a/a

(Z„_ 1^)
1/a

}.

010)

/(0)

p2
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For simplicity let us take a=£, a= l. Then the equations of §2n§2»+i and
°f Qin + 1 §2n + 2 are respectively

y=«n-l{\/e(^n-l^)} = «n-2{(^-2^
e

} =>»(•»).

y = e„{(^-i.r)/V«} =«„-l{(?„-2^)
1'^8

} =/*»(*),

say. Now (iv. § 1)

** -< X, < ... <K<...<^< ... <?,<*"
and a function /, such that A„-</-< fin for all values of n, transcends the

logarithmico-exponential scales. But / clearly satisfies these relations, and

so its increase is incapable of exact measurement by these scales.

It is easily verified that X„X„a: -< e* and Unf^x >- e1 for all values of n.

Hence it is clear a priori that any increasing solution of (1) must satisfy

This kind of 'graphical' method may also be employed to define functions

whose increase, like that of the function considered under (i) above, is slower

than that of any logarithm or more rapid than that of any exponential. It

can be employed, for example, to solve the equation

and it can be proved that the increase of a function such that <j> (2
X
) X 4> (x)

is slower than that of any logarithm (vu. § 3).

6. The importance of the logarithmico-exponential scales.

As we have seen in the earlier paragraphs of this section, it is possible,

in a variety of ways, to construct functions whose increase cannot be

measured by any Z-function. It is none the less true that no one yet

has succeeded in defining a mode of increase genuinely independent of

all logarithmico-exponential modes. Our irregularly increasing func-

tions oscillate, according to a logarithmico-exponential law of oscillation,

between two logarithmico-exponential functions; the functions of § 5

were constructed expressly to fill certain gaps in the logarithmico-

exponential scales. No function has yet presented itself in analysis

the laws of whose increase, in so far as they can be stated at all, cannot

be stated, so to say, in logarithmico-exponential terms.

It would be natural to expect that the arithmetical functions which

occur in the theory of the distribution of primes might give rise to

genuinely new modes of increase. But, so far as analysis has gone, the

evidence is the other way.

Thus if we denote by sj(x) the number of prime numbers less than x, it is

known that

m (x) <**> .w
log a;

3—2
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More precisely

where
| p (x)

\
-< x (log x)

A
. The precise order of p (x) has not yet been

determined, but there is reason to anticipate that p (x) =^[ v'^/(log x).

VI.

DIFFERENTIATION AND INTEGRATION.

1. Integration. It is important to know when relations of the

types /(#)>- <£(#), etc -> can be differentiated or integrated. The

results are very much what might be expected from analogy with

similar results in other branches of analysis, and may therefore be

discussed somewhat summarily. For brevity we denote

f/(t)dt, /%(*)#
J a J a

(where a is a constant) by F(x) and $ (x). And we suppose for the

moment that/and <p are positive for x S a.

It may be well to repeat (cf. i. § 4) that/and <p are always supposed

to be (at any rate for a»x ) positive, continuous, and monotonic, unless

the contrary is stated or clearly implied. Some of our conclusions are

valid under more general conditions; but the case thus defined, and

the corresponding case in which / or <p or both of them are negative,

are the only cases of importance.

Lemma. If <E> >- 1, and f> H<f> /or x > # > then a\ can be Jound

so that F>(H—&)® for x>%1 : similarly f<h<f> for x>x involves

F<(h + S)>tfor x>Xi.

For if/> H<j> for x > x„, we have

rx rxt, rx rx„ rx„

F=\fdt>\ fdt +H <j>dt>H4>+\ fdt~H\ <pdt,
J a J a J x J a J a

and if we choose Xi so that

( Hfdt + H r<l> di\l<k < €

for x^xu as we certainly can if $ >- 1, the result follows. Similarly

in the other case. From this lemma we can at once deduce the

following
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Theorem. Any one of the relations

involves the corresponding one of tlie relations

Fy% i?X*, FX®, F^$, F~&
if either F>-lor®yi.

To this we may add : if both I fdt, I <£ dt are convergent, then

fy~<f>, /-< <£,/X <£,/X <£,/~ i> involve corresponding relations between

F=j fdt, *=
J <f>dt.

J X J X

The proof we may leave to the reader. These results have been

stated primarily for the case in which / and <£ are positive ; but there

is no difficulty in extending them to the case in which either function

or both are negative.

2. Differentiation. It follows from § 1 that fy<f> involves

f'y~$ if fy- 1 or /-< 1 and if any one of the relations expressed by

>-, -<, X, X, ~ holds between /' and <j>'.

In interpreting this statement regard must be paid to the conventions

laid down in I. § 4. Thus if />- (j> >- 1, /' and <£' are positive, and /' >-
<f>'.

But if />- 1 )>-4>, <j> is a decreasing function and <£'<0. In this case

/' >- — <j>', a relation which we have agreed to denote by /' >-
<f>'.

If 1 >-/>- <j>

both/' and
<f>'

are negative : the relation -/' -< - $' would involve

-fj'dt^-jy'dt

or /-<[
<f>,

and is therefore impossible ; similarly for —/'X — <t>' \ so we must

have —/' >--<£', a relation which we have agreed also to denote by /' >- <j>'.

The case in which f^lis exceptional ; any one of the relations /' >- <j>', etc.

maythenhold. Thus if/=l + e- x,/' = l/#, we have/>0,/X^'- Thefact

is that in this case /, regarded as the integral of /', is dominated by the

constant of integration.

Similar results hold, of course, for the relations /-< <j>, etc., with

similar exceptions. With regard to all of them it is to be observed

that the assumption that one of the relations holds between /'

and <£' is essential. We can never injer that one of them holds.

We cannot even infer that/' or
<f>'

is a steadily increasing or decreasing

function at all. Thus \i f=ex
, <£ = <f + sin<f, we have/'=ea: and

0' = e° (1 + cos e*). Thus / and <f>
increase steadily and /~ <j>, f ~/

;
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but 4> does not tend to infinity (vanishing for an infinity of values

of x). Again if

<£ = ec (J'2 + sin x) + \a?,

we have <f>'
= e" (^/2 + sin x + cos x) + x

and <f> X 0", while
<f>'

oscillates between the orders of e* and x. It is

possible, though less easy, to obtain examples of this character in which

<£' also is monotonic.

3. Differentiation of i-functions. If/and <£ are Z-functions,

so are/' and <j>', and one of the relations /'>-<£', /'X^', /'-<<£'

certainly holds (in. § 2). Thus in this case both differentiation and

integration are always legitimate*—this statement, however, being

subject to certain exceptions in the cases in which/X 1 or <£X 1-

In what follows we shall suppose that all the functions concerned

are .//-functions, or at any rate resemble i-functions in so far that one

of the relations/>-<£, /X<£, / -< <£ is bound to hold between any pair

of functions, and that differentiation and integration are permissiblet.

1. Ij f is an increasing function, and f >-/ then fye*x
. If

/' -</, thenf^ eSx. Similarly iff is a decreasingfunction, J ' yj and

f'-^f involve f^e~AX and fye~ Sx respectively. If f'^J, then

e*
x -</-< eA* or e~ Ax -*\f?Ke~ Sx

, and we can find a number /* such

that J = erxf, where e~Sx -</i -< e*
x

.

The proofs of these assertions are almost obvious. Thus if/ is an

increasing function, and/' >-/ we have

f/jyi, hgjyx,

and so log./>A# for x>x , i.e. f>e*x, or, what is the same thing,

fy e*x- The last clause of the theorem follows at once from in. § A.

2. More generally, if v is any increasing Junction, f'/fyv'/v

involvesfy v* orf -< e~A , according asfis an increasing or a decreasing

function ; and f'jf -< v'jv involves/-< -u* or/> ?;
_ s

- And f'/fX- v'/v

involves Vs -</ -<flA or v~ A -</ -< «~ s
,• and then we can find a number

fi such thatf= xf-f, where v~s -</ -< Vs .

When/ is an increasing function we shall call /'//the type t of/ \

:

it being understood that t may be replaced by any simpler function t

such that tX T - The type of a decreasing functionf we define to be

* A tacit assumption to this effect underlies much of Du Bois-Beymond's work,

t The results which follow are all in substance due to Du Bois-Beymond.

| Du Bois-Beymond calls///' the type; the notation here adopted seems slightly

more convenient.
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the same as that of the increasing function 1/f. The following table

shews the types of some standard functions :

Function 1 llx 1% a? e* e^ e2x e3x

Type ° xlxWx Id* t
X ^ _1 ex e*xex -

If />-<£, then f'lf^4>'l<t>- By making the increase of / large enough we
can make the increase of t=f'/f as large as we please. The reader will find

it instructive to write out formal proofs of these propositions, and also of

the following.

1 . As the increase of/ becomes smaller and smaller, /'// tends to zero

more and more rapidly, but, so long as/ -»- oo at all, we cannot have

f'lf<<t>, f <f>dx convergent.

On the other hand, if the last integral is divergent we can find / so that

f>h f/f<<t>.

2. Although we can find/ so that /'// shall have an increase larger than

that of any given function of x, we cannot have

/°° dx
^j^ convergent.

On the other hand, if the last integral is divergent we can find / so that

/7/> <?>(/)•

[Thus we cannot find a function / which tends to infinity so slowly that

flf-K, l/#" (a > 1). But we can find / so that f'lf-K, l/xlxllx (e.g. f—l3 x).

We cannot find / so that /'//>-/" or /' >/l+a
(a > 0). But we can find

f so that f'lfyif (e.g. f= e3x).]

3. lff)>-ekx for all values of k, f'/f satisfies the same condition, and

f>flflj.-hf-
He will also find it profitable to formulate corresponding theorems about

functions of a positive variable x which tends to zero.

4. Successive differentiation. Du Bois-Reymond has given

the following general theorem, which enables us to write down the

increase of any derivative of any logarithmico-exponential function.

We write t for /'//, as in the last section, and we assume that no

derivative J
(n

> satisfies /<*>^ 1 : if this should be the case the results

of the theorem, so far as the derivatives /<"+1),." are concerned, cease

to be true.

Theorem, (i) If t >- l/<r (so thatJ >- #A) then

y Hj'/t ^/"if^r'if... ^/w/*K •••
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(ii) Ift-^l/x (so thatJ -< a?)

f^f'/t^ xf'ltN «?f'"lt . . . ^ j^/W/t ....

(iii) Ift^ \\x (so tkatf= x^f , where x~ s
-</i -< Xs

), ^A«m if /* jg

«o£ integral either set offormulae is valid. But if p is integral

f^af'^aPf"...X^fMHx^^+^t1 î^+V^+2%-,
where tx is the type offt.

(i) If t y 11x, ljt^x and so fjf^l; hence t'/t -< t =f'jf or

ft'<f't.

Differentiating the relation /' ^.ft, and using the relation just

established, we obtain

f'Xf't+ft'^f't.

Thus the type of/' is the same as that of/; accordingly the

argument may be repeated and the first part of the theorem follows,

(ii) lit^ljx, xf'^f and so

xf"+f'<f'.

But this cannot possibly be the case unless xf'^f. Differ-

entiating again we infer

xf'" + 2f"^f",

whence xf" N/" ; and so on generally*. Thus the second part

follows.

(iii) If t^l/x, f=x*f1 and tlt the type offu satisfies tf^ 1/x.

Then
/' = ,«*-»/, + x»f^ afi-Vi (/» + iti)X v-Vi ;

Similarly/" ^a**~Vi and so on. We can proceed indefinitely in this

way unless /«. is integral : in this case we find /M X/i, and from this

point we proceed as in case (ii).

Examples, (i) If /=W* then t= l/^xyi/x, and /«^(V*/^
)
n

.

If /=e<iog«)»
)
then *=(log#)/* >~l/#, and /<»>^ eOog»)» (log #)"/#».

(ii) If/=(log#)m, then «= l/(#log#) -< I/*1

, and

/<")^ to-f"" 1)/^ (log#)m - 1
/tf».

(iii) If/= tf
2to, f!^l/tf. Here

f&sllx, rWlx, f&l/xl*, f""^\\tflx, ....

(iv) The results of the theorem, in the first two oases, can be stated

more precisely as follows

:

If tyi/x, then

/<n>~ (/'//)"/

* More precisely xf"c**> -/', x/"'~ -. If", and so on.



DEVELOPMENTS OF THE INFINITARCALCUL 41

If t < l/#, then
/(») ~ ( - l)»-i (n - 1) !

*-(»-»)/'.

If/ is a positive increasing function, then if < >- l/# all the derivatives are

ultimately positive, while if t -< l/.» they are alternately ultimately positive

and ultimately negative.

5. Functions of an integral variable. The theorems for

functions of an integral variable n, corresponding to those of §§ 1—4,

involve sums
A n = al + ai + ... + an

in place of integrals, and differences

Aan = an — an+i

instead of differential coefficients. The reader will be able to

formulate and to prove for himself the theorems which correspond

to those of § 1. Thus

'an yf>n, ««-<&»., an^bn , an ^bn , an ~bn involve the corre-

sponding equations for A n , Bn , if one at least of An , Bn tends

to infinity with n

'

and so on*. Considerations of space forbid that we should go further

into the subject here.

VII.

SOME DEVELOPMENTS OF DU BOIS-REYMOND'S
INFINITARCALCUL.

1. We shall conclude our account of the general theory by a brief

sketch of some interesting results due in the main to Du Bois-Reymond.

For further details we must refer to his memoirs catalogued in the

Bibliographical Appendix.

mi j- . • flx + a) f(ax) _,

1 he junctions \, . , .. / , etc.

J \
xl JW

It is often necessary to obtain approximations to such functions as

f(x+a)/f(x),

where a is itself a function of x, which for simplicity we suppose

positive, and which may tend to infinity with x. In this connection

* This is of course the well known theorem of Cauchy and Stolz : see Bromwich,

Infinite Series, p. 377.
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Du Bois-Reymond* has proved a whole series of theorems : it will be

sufficient for our present purpose to give a few specimens of his results.

In what follows it will be assumed throughout that all the functions

dealt with are Z-functions, or at any rate such that any pair of them

satisfy one of the relations />-<£, /^<£, /•<<!>, and that such

relations may be differentiated or integrated. This being so we

have

/£ti!) =/,^« = e Lf-^4\

,

/(«) I /(« + *)/

where < a < a. This expression has certainly the limit unity if

/'^/and a-<l. Hence
f(x + a)~f(x) (1)

if a^l and <rA*-</ -<«*». If /'//•< 1, i.e. if «-*"</ -<«*», the

relation (1) holds for a -<///': it certainly holds, for instance, if

a = x{f(x))->1
, where c->Q, since x/f*-<,///' whenever />- It.

If aXfff (as e.g. if /=*-£, where «- to
-</i <eSx

, and a^l),

f(x + a)j/(x) will tend to a limit different from unity.

** ^-•{•SSW
where t =/'//. Hence

in all cases in which t {x + a)jt (x) ~ 1 ; as for example if a^ 1,

e-^-^K*8* or, what is the same thing, if

a<l, e-'
sx
<f<e<?

x
.

The reader will find it instructive to write down conditions under

which the equation (2) holds when u ^a is substituted for w~a, and

to consider in what circumstances either relation holds when a >- 1.

2. The reader is also recommended to verify some of the

following results :

(i) 7/l-<iz-<i;arij;-4 -(/-<^ thenf(x + a)/f(x)~ 1.

(ii) If/-<# and a^l/f',or iff^x and a-<l, then /(i;+a)-/(i)-<l.

(iii) If e-
Sx -</-< e

Sx and a -<f'/f", then

f(x+a)-f(x)~af(x).

* Math. Annalen, Bd. 8, S. 363 et seq.

f For
(
f-t-Pf'dx is convergent, and so /'//1+'* "*\ !/*•
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The condition a -< /'//" may be simplified by means of the theorem of

vi. § 4. Thus if t -< 1/x (i.e. iff -< xs
) it is equivalent to a -< x.

(iv) If x-*<a<

x

s
,
(lx)~ A<f< {lx)

A
, thenf(ax)/f(x) ~ 1.

(v) Ife-A«l**-<f<e^Vx\tken

anc£ the limits of the two functions are the same: and if e
-8^*)-^ «*%/('*) ^is

?im# is unity.

Suppose, e.g.fy- 1, and let /(#) =$ (Ix) ; then, if a=f(x),

f(x)

where 1 < a
1 < a. The exponent is

14

Now «=/(#) -<#8 and therefore Zax ^ la -< fo?, and so, by (i),

l<j) (lx+ la{) ~ l<j> (Ix)

if ty-^x* or if /-< e
(te

>
, which is certainly the case. Hence the exponent

is asymptotically equivalent to

where «=& + &!,. And l<j>(<p'/<j>) =< 1 if (tyY^u, i.e. if ^>=<eA^M or

/^e^^^. In this case f(ax)^f(x); and it is easy to see that if

/^es^ (fe) the symbol ^ may be replaced by ~.

(vi) Tjf/ (a?)=«0 (#), ande-*^ 1*) ^q^^Ux)^ then

fc(x)=ff(x)~n4>2
, ...,/„ ~#tf>

n
, ....

The reader will easily prove this by the aid of the preceding results. He
will also find it instructive to calculate the increase of f„ when /= e^(fa

> and
when/=e(fa

)
a
, where a>\.

The accuracy oj approximations.

3. We have already (it. §§ 3—4) had occasion to use the notion

of an approximation to the increase of a function, and to distinguish

legitimate and illegitimate forms of approximation. Du Bois-Reymond

has given the following more precise definitions.

He defines ^(x, u, u1} ...) to be an 'approximate form' of y if

y = ^(x, u, «n ".)i

i(r being a known function, and u, ut , ... unknown functions whose

increase is, however, subject to certain limitations. It is clear that

it is really useless, however, to insert more than one unknown function
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u in i/r. The effect of the presence of u is to define a certain stretch

within which the increase of y lies, and the presence of several u'& can

effect no more. We shall therefore consider only approximate forms

of the type

y = ^(x, u) (1).

Thus <?" (w~l), eW (w-<l), a^+V (u^l) (2)

are approximate forms of y = xe°jlx ; the second clearly closer than

the first and the third than the second.

The closeness of an approximation may be measured as follows.

The presence of u in (1) lends a certain degree of indeterminateness

to the increase of y : all that we can say (the increase of u being

known to lie between certain limits) is that y lies in a certain interval

Now (II. § 8) we can find an increasing function F so that

^t

(
17i)XjP(%) : if F satisfies this condition, any more slowly in-

creasing function will do so too. The slower the increase of F must

be taken, the rougher the approximation.

The facts may be stated the Qther way round. Given y, and a

function F, such that 1 -<< F -K.x, we can determine an interval

^l^y^Vi such that F^^F(%). The slower the increase of F,

the larger this interval may be taken; if F)^x it vanishes, ifF^l
it may be taken as large as we please. If F=lx it might be (if, y*) ;

if F= 4* it might be

and so on. No logarithmico-exponential form of F, however, can give

an interval as large as (logy, ev); a function .Psuch thatF(y)^F (ev)

must transcend any logarithmico-exponential scale.

Let us consider the approximations (2) for xe*/lx.

(i) If y=exU (u ~ 1), y lies in the interval e"
~

, ex . Since

ZZ(^
1_s

)=(l-8)^X«(«a;1+S
)

we may take F—llx, or even F=(llx)^ : but the increase of F cannot be

taken as large as (lx)
s

.

(ii) If y= e<.
1 + u

)
x (»<1), y lies in the interval e^

1-5
'^, e (-1+s)x

. Then we

may take F= (lx)^, but we cannot take F=el,x
)

s
.

(iii) If y=x1 + uex we may, as the reader will easily verify, take F=eWl
,

where p is any number less than unity.
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Another example of an approximation is given by the formula

If, e.g., a is a constant,

and the degree of accuracy of the approximation is great enough to be

measured by the function F=lx.

The approximate solution of equations.

4. It is often important to obtain an asymptotic solution of an

equation f(x, y) = 0, i.e. to find a function whose increase gives an

approximation to that of y. No very general methods of procedure

can be given, but the kind of methods which may be pursued are

worth illustrating by a few examples.

(i) Suppose that the equation is

«>=yK {y) (1),

where ^
_s-<k-<^. If the increase of * is so slow that k {yK (y)} X k (y)

it is clear that

and if the increase of « is slow enough we may have y ~ x\k (x).

The conditions

„-AVM <«(y)< eAVW, «-V« -<K(y)< esV

W

are, by the result (v) of § 2, enough to ensure the truth of these

hypotheses; and then y = uxJK(x), where ti^l (or a ~ 1) is an

approximate solution of our equation.

Du Bois-Keymond has proved that the more elaborate approximations

y= uxl{< (ar/K )}, y= m^k-W1+ <*"'«>

have a wider range of validity : and that more elaborate approximations still

may be constructed valid within the range

The more general equation

x=ym«(y)

can clearly be reduced to the form considered above by writing xm for

x and Km for k.
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In general, if x = <}> (y), the more rapid the increase of <£ the more
precisely can we determine the increase of y as a function of x. Thus if

x = yev

we have lx = y + ly and

y = lx — ly = lx(l + u),

where u ~ ly/lx ~ llx\lx. This is a solution of a much more precise

kind than those considered above.

5. The reader will find it instructive to examine the following

results :

(i) Let x=yeW\
This is an example of the work of § 4 : and

y ~ xe~^x^".

x=ye™m.

y~xe[- (Ix) M{l-(lx)- 3'8
}
«s]

~xe{-{lx)M + §(lx) lli
}.

x=ym {lyT>{l2yT*...(lry)™r.

y~mm>lmx1/m (lx)-m 'lm
... (lrx)-

m^m
.

x—efly.

Here y= J(lx-l3x)+u (m-<1).

(v) As an example of another type, Du Bois-Beymond has considered

the equation

where C is a positive constant. He finds

y~Clf{x) {f{x)>lx),

y= xe{Cujxf' (x)} (w~l, lx)>-f(x)~^-llx),

and so on : the forms of the solution when/X &p> /X 11%, • •• are exceptional.

(vi) As an example of an approximation pushed to greater lengths let us

take the following result : if

x=yly,

.

,

x f , llx . (llx)2 llx

)

then y=_j1+ _ +y.__j +W)

where U~^ "

6. Here we may bring our account of the general theory to a

close. It is a theory that has found, and is finding, a large and

increasing variety of applications in various branches of mathematics :

the nature of some of these applications the reader may glean from

Appendix II.

(ii)
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APPENDIX I.

GENERAL BIBLIOGRAPHY.

Du Bois-Reymond's memoirs bearing on the subjects of this tract are :

Sur la grandeur relative des infinis des fonctions (Annali di

Matematica, Serie 2, t. 4, p. 338).

Th^oreme general concernant la grandeur relative des infinis

des fonctions et de leurs derivees (Crelle's Journal, Bd. 74, S. 294).

Eine neue Theorie der Convergenz und Divergenz von Reihen

mit positiven Gliedern. Anhang: Ueber die Tragweite der

logarithmischen Kriterien (Crelle's Journal, Bd. 76, S. 61).

Ueber asymptotische Werthe, infinitare Approximationen, und

infinitare Auflosung von Gleichungen (Math. Annalen, Bd. 8,

S. 363). Nachtrag zur vorstehenden Abhandlung (ibid., S. 574).

Notiz iiber infinitare Gleichheiten (Math. Annalen, Bd. 10,

S. 576).

Ueber die Paradoxen des Infinitarcalciils (Math. Annalen,

Bd. 11, S. 149).

Notiz iiber Convergenz vou Integralen mit nicht verschwin-

dendem Argument (Math. Annalen, Bd. 13, S. 251).

Ueber Integration und Differentiation infinitaren Relationen

(Math. Annalen, Bd. 14, S. 498).

Ueber den Satz : \\m/'(x) = \\mj(w)lx (Math. Annalen,

Bd. 16, S. 550).

See also

A. Pbingsheim: Ueber die sogenannte Grenze und die Grenzgebiete

zwischen Convergenz und Divergenz (Munchener Sitzungsberichte,

Bd. 26, S. 605).

Ueber die Du Bois-Reymond'sche Convergenz-Grenze u.s.w.

(Munchener Sitzungsberichte, Bd. 27, S. 303).

Allgemeine Theorie der Convergenz und Divergenz von Reihen

mit positiven Gliedern (Math. Annalen, Bd. 35, S. 347).

Zur Theorie der bestimmten Integrale und der unendlichen

Reihen (Math. Annalen, Bd. 37, S. 591).

J. Hadamard: Sur les caracteres de convergence des senes a termes

positifs et sur les fonctions ind^finiment croissantes (Acta

Mathematica, t. 18, p. 319 and p. 421).
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S. Pinchekxe : Alcune osservazioni sugli ordini d' infinite* delle funzioni

(Memorie della Accademia delle Scienze di Bologna, Ser. 4, t. 5,

p. 739).

E. Borel : Lecons sur lesfonctions entires, pp. Ill—122.

Lemons sur les series d, termes positifs, pp. 1—50.

Lemons sw la thebrie de la croissance.

APPENDIX II.

A SKETCH OP SOME APPLICATIONS* WITH REFERENCES.

A. Convergence and divergence of series and integrals.

(i) The logarithmic tests. The series 2«„ (un > 0) is convergent if

un < n-'-a

or un *4(nln... 4-i»)
_1

(4«)
_1_a

,

where a > 0, and divergent if

un > n-1

or un )^{nln...lkn)~
1
.

The integral I f(x) dx (/ 2 0) is convergent if

f<x- 1-°

or /=< (xlx . . . 4-i#)
-1

(hx)
_1 -",

where a > 0, and divergent if

f<«r l

or fy(xlx...lkx)-\

The integral
\ f(x)dx{f^0) is convergent if

Jo

y<(iM1-"

or J <(l/») {l(l/x) ... 4-i (l/x)}-
1 {4(l/^)}-1 - a

,

where a > 0, and divergent if

or f^(l/x){l(l/x)...lk (l/x)}-\

* That is to say of certain regions of mathematical theory in which the notation

and the ideas of the InfinitarcalcUl may be used systematically with a great gain

in clearness and simplicity.
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[The first general statement of the 'logarithmic criteria,' so far

as series are concerned, appears to have been made by De Morgan

:

see his Differential and Integral Calculus, 1839, p. 326. The
essentials of the matter, however, appear in a posthumous memoir
of Abel (CEuvres completes, t. 2, p. 200 ; see also t. 1, p. 399). This

memoir appears also to have been first published in 1839. The case

of k=l had been dealt with by Cauchy (Exercices de MatMmatiques,

t. 2, 1827, pp. 221 et seq.). Bertrand appears to have arrived at

some or all of De Morgan's results independently (see Liouville's Journal,

t. 7, 1842, p. 37) and the criteria are very commonly attributed to him.

The criteria for integrals do not appear to have been stated generally

before Riemann, Inaugural-Dissertation of 1854
(
Werke, S. 229).

The following references may also be useful

:

Bonnet, Liouville's Journal, t. 8, p. 78.

Dini, Sulle serie a termini positivi (Pisa, 1867); also in the

Annali dell' Univ. Tosc, t. 9, p. 41.

Du Bois-Reymond, CrelMs Journal, Bd. 76, S. 619.

Pringsheim, Math. Annalen, Bd. 35, S. 347 and Bd. 37, S. 591

;

also in the Encyklopadie der Math. Wiss., Bd. 1, Th. 1, 8. 77 et seq.

Hobson, Theory offunctions of a real variable, p. 406.

Bromwich, Infinite series, pp. 29, 37.

Hardy, Course ofpure mathematics, pp. 357 et seq.

Chrystal, Algebra, vol. 2, pp. 109 et seq.]

(ii) General theorems analogous to Du Bois-Reymond's Theorem

(n. § l).

Given any divergent series ~S,un of positive terms, we can find a

function vn such that vn ^_un and %vn is divergent; i.e. given any

divergent series we can find one more slowly divergent.

Given any convergent series %un of positive terms we can find

vn so that vH >- un and %vn is convergent; i.e. given any convergent

series we can find one more slowly convergent.

Given any function 4>(n) tending to infinity, however slowly, we
can find a convergent series %un and a divergent series ~S,vn such

that vn/un = <j> (n).

Given an infinite sequence of series, each converging (diverging)

more slowly than its predecessor, we can find a series which converges

(diverges) more slowly than any of them.

[See Abel and Dini, I.e. supra ; Hadamard, Acta Mathematica, t. 18,

p. 319 and t. 27, p. 177; Bromwich, Infinite series, p. 40; Littlewood,

Messenger of Mathematics, vol. 39, p. 191. J

h. 4
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There is no function <£ (n) such that un<f> (n) > 1 is a necessary

condition for the divergence of 2w„, and no function <£(») such that

<t> (n) >- 1 and un<f> (n) =< 1 is a necessary condition for the convergence

of S««.

If un is a steadily decreasing function of n, then nun -< 1 is a

necessary condition for convergence ; but there is no function <j> (n)

such that 4> (n) >- 1 and w# (w) m„ -< 1 is a necessary condition.

[Pringsheim, Math. Annalen, Bd. 35, S. 343 e£ seg. ; ibid., Bd. 37,

S. 591 et seq.]

If however nun decreases steadily, then n log nun -— is a necessary

condition ; and if ml/ (n) un , where n\b (n) >- 1 and | , , . )- 1, decreases
} n\fi{n)

steadily, then

(^ (W) /^)) M^°
is a necessary condition.

(iii) Special series and integrals possessing peculiarities in respect

to the mode of their convergence or divergence.

For examples of series and integrals which converge or diverge

so slowly as not to answer to any of the logarithmic criteria see

Du Bois-Reymond, Pringsheim, Borel {I.e. supra), and Blumenthal,

Principes de la thebrie desfonctions entires d'ordre infini, ch. 1.

In these cases the logarithmic tests are insufficient (en defaut,

iv. §§ 2, 5). For examples of series and integrals to which the

logarithmic tests are inapplicable (v. §§ 3, 4) see the writings just

mentioned and also

Thomae : Zeitschriftfur Mathematik, Bd. 23, S. 68.

Gilbert : Bulletin des Sciences Mathematiques, t. 12, p. 66.

Goursat : Cours d' Analyse, t. 1, p. 205.

Hardy : Messenger of Mathematics, vol. 31, p. 1 ; ibid., vol. 31,

p. 177 ; ibid., vol. 39, p. 28.

B. Asymptotic formulae jor finite series and integrals.

A closely connected problem is that of the determination of

asymptotic formulae for

A n = a1 + a2 +...+«„

or for $ (x) = f <1> (t) dt,
Ja

when the behaviour of an or <j> (x) for large values of n or x is known.

A good deal can be accomplished in this direction by means of
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(i) the theorem of Cauchy and Stolz, that, if a„ and bn are positive and

an ~ Cbn , then.An ~ CBn ,
(ii) the theorems of vi. and (iii) the theorem

of Maclaurin and Cauchy, that
rn

</> (1) + <£ (2) + ...+4>(n)- / <f>(x)dx,

where 4> (x) is a positive and decreasing function of x, tends to a limit

as n -* oo

.

[For (i) see Cauchy, Analyse algebrique, p. 52 ; Stolz, Math.

Annalen, Bd. 14, S. 232, or Allgemeine Arithmetik, Bd. 1, S. 173
;

Jensen, Tidskrift for Mathematik (5), Bd. 2, S. 81 ; Bromwich,

Infinite series, p. 378, and Proc. Lond. Math. Soc, ser. 2, vol. 7,

p. 101. Proofs of (iii) will be found in almost any modern treatise

on analysis : e.g., Bromwich, Infinite series, p. 29 ; Hardy, Course

of pure mathematics, p. 305. An important extension to slowly

oscillating series has been given recently by Bromwich (Proc. Lond.

Math. Soc, ser. 2, vol. 7, p. 327).]

Among the most important results which follow from these

theorems are

ns+1

r, + 2s +...+ws ~—- (s>-l),
s + 1

"

ns+1

I'+i'+.-.+n" j~£(-s) (-1<*<0),

,1 In
2
+ "" +

w
gW ~ 7'

1
a.($ a(a+l)jS08+l)

1 +—- + ; '
/ ,

x

+ ••• to n terms,
l.y 1.2.y(y + l)

r(y) w+0-y
(a + /3>y),

logM (a + /3 = y).

r(a)r(/3)a + /3-y

r(a + j8)
(W ~ — —— .

r(a)r(/8)'

In connection with the last result see Bromwich, Proc. Lond. Math.

Soc, ser. 2, vol. 7, p. 101 ; in the earlier formulae y is Euler's constant

and £ denotes the 'Riemann £-function.'

The most important of all formulae of this kind is beyond question

logl + log 2 + ... +logn-(n + |)logw + n ~ |log(27r),

which, in the form

constitutes Stirling's Theorem. The literature connected with Stirling's

Theorem and its extensions to the Gamma-function of a non-integral

4—2
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or complex variable is far too extensive to be summarized here. See

Encykl. der Math. Wiss., Bd. n. (2), S. 165 et seq. ; Bromwich, Infinite

series, pp. 461 et seq.

Another formula of the same kind is

l'iM1
... n* ~ An^ +^ + ^e- in

\

where A is a constant defined by the equation

logA = T\ log 2* + T\y +X 2M-v .

<«« 1 V

The properties of this constant have been investigated by Kinkelin

and Glaisher (Kinkelin, Crelle's Journal, Bd. 57, S. 122 : Glaisher,

Messenger of Mathematics, vol. 6, p. 71 ; vol. 7, p. 43 ; vol. 23, p. 145
;

vol. 24, p. 1
;
Quarterly Journal of Mathematics, vol. 26, p. 1 : see also

Barnes, ibid., vol. 31, pp. 264 et seq.).

All these results are intimately bound up with the theory of

the general ' Euler-Maclaurin Sum Formula'

%f{n) =
j

n
f{x)dx + G + y(n) + ^f'{n)-^f''\n) + ...

which also possesses an extensive literature (see Schlomilch, Theorie

der Differenzen und Summen; Boole, Finite differences; Markoff,

Differenzenrechnung ; Seliwanoff, Difierenzenrechnung ; Encykl. der

Math. Wiss., Bd. I. S. 929 et seq. ; Bromwich, Infinite series,

p. 238 and p. 324 ; Barnes, Proc. Lond. Math. Soc, ser. 2, vol. 3,

pp. 253 et seq. ; where many further references are given).

A simple example of the use of the general formula is afforded

by the relation

^
3

-^l - i»
s - ? < - D- 1

(2,1 J§«— ~ C( -,).

Here s is positive and not integral, and the summation with

respect to i is continued until we come to a negative power of n.

C. Formulae involving prime numbers only.

Asymptotic formulae involving functions denned arithmetically,

and particularly functions defined by sums of functions of prime

numbers only, play a most important part in the analytical theory

of numbers. Of these the most important is the formula

where n (n) denotes the number of prime numbers less than n.
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Similarly it is known that

%lp ~ n, %^-o^ln, %-r^Un
P P

(the summation in each case applying to all primes less than n) while

°° 1 .

2 -j- is convergent.
pip

Many more accurate results have been established by recent

writers, particularly Mertens, Hadamard, Von Mangoldt, De la Vall^e-

Poussin, and Landau ; and the theory has to a considerable extent

been freed from Riemann's still unproved assumption that all the

roots of Hs Zeta-function have their real part equal to £. Thus it

has been shown that

or, still more accurately,

rn /I™

n(«)= .— + O {fW-Vtfn)}
v ' J 2 log«

where a is a positive constant ; but it still remains to be settled

whether (as there is some reason to suppose) the last term can be

replaced by (*Jn) or even by
' Jri\

°(£>
[It would carry us too far to give detailed references to the

literature of this exceedingly difficult and fascinating subject. The

reader should consult Landau's exhaustive Handbuch der Lehre von

der Verteilung der Primzahlen (Teubner, 1909).]

D. The theory of integralfunctions.

1. The series ~%cn xn will converge for all values of x (real or

complex), and so define an integral function fix), if and only if

V|c»l— 0,t.«. if|c„Ke-A"

2. The three indices of a function of finite order. The three

most important characters of an integral function f(w) are :

(i) y« = I

Cn
1

1 the modulus of the wth coefficient

;

(ii) a„ = |
an \

, the modulus of the rath (in order of absolute

magnitude) zero of f (x)
;

(iii) M (r), the maximum of \f(x)\ on the circle \x\ =r. M{r) is

known to be an increasing function of r, and in all cases M (r) >- rA .
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A function such that M (r) -< er
*~

is called a junction 0/ finite

order. We shall confine our remarks to such functions.

The principal problem of the theory of integral functions is the

determination of the relations between the increases of an , l/y„, and

M (»•). Those which subsist between the two latter functions are the

simplest : when an is taken into account the theory is complicated by

the ' Picard case of exception '—the case of functions which (like <f

)

have no zeroes, or whose zeroes are scattered abnormally widely over

the plane.

The nature of the results of the general theory may be gathered

from a statement of a few of the simplest of them.

If »-"-*-< Vy»-<»~'
1+*.

i.e. if £(l/yre) ~ pnln,

we call n the fi-index. The index may be defined in all cases without

any assumption as to the existence of a limit for {l(l/yn)/(nln)}; we

confine ourselves to the simplest case.

If nPW-«-< a. -<«('/«+»,

we call A the k-index ; and if

er"-*^M(r)<0r*
+
\

we call v the v-index : thus

lan ~ (ln)/\, II M{r)r^v Ir.

Then /x = 1/v : and in general A. = v.

Thus for the function

sin (Jx) _, _ x x1 _
Jx ~ Tl

+
5\ "'

we have A = v = £ and /* = 2, as the reader will easily verify (using

Stirling's Theorem to determine /*).

3. Special results. More precise results than these have been

obtained in many cases. Thus if

{n(ln)-<" ... (l,n)-^+s}- 1l"^ «jyn -< {n (&»)--. ...(Z„«)-v-«}-i/p,

then
e {re (lr)"i ... (lp r)

a"-s\^M(r)^e {r" (//•)«> ... (l„r)°v+*},

and conversely.
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As examples of still more accurate, but more special results, we
may quote the following :

s-V(£>I/2"« ,a/^Kan

xn 1

(»!)" V"

(aw + 1)
w

I/a

2- *
r

loga^WP-D

where a > and in the last formula 1 <p < 2, and throughout #-»- <x>

by positive values.

These results may of course be used to give an upper limit for the

modulus of the particular function considered when x is not necessarily

real, and so for M(r). Thus in the first case

[The reader who wishes to become familiar with the theory of

integral functions should begin by reading Borel's Lemons sur les

fonctions entires. Some additions will be found in the notes at the

end of the same writer's Lemons sur les fonctions meromorphes. He
should then read two memoirs by E. Lindelof; a short one in the

Bulletin des Sciences MatMmatiques, t, 27, p. 1, and a long one in

the Acta Societatis Fennicae, t. 31, p. 1. Some of the results of this

last paper were proved independently by Boutroux {Acta Mathematica,

t. 28, pp. 97 et seq.) ; but M. Boutroux's important memoir is largely

occupied by a discussion of some of the most difficult points in the

theory.

Much of the theory has been developed in a very simple and

elementary way by Pringsheim (Math. Annalen, Bd. 58, S. 257) ; and

the reader should certainly consult a short note by Le Roy {Bulletin

des Sciences MatMmatiques, t. 24, p. 245). But, after reading the

works of Borel and Lindelof mentioned above, he will be wise to turn

to Vivanti's Teoria dells funzioni analitiche (German translation by

Gutzmer), which contains by far the fullest treatment of the subject

yet published, and an exhaustive list of original memoirs.]



56 APPLICATIONS

E. Power series with a finite radius of convergence.

Suppose that a1 + a2 +... is a divergent series: for simplicity

suppose that an is always positive and steadily increases or decreases

as n increases. Further suppose e~Sn -< an -< e*
n

, so that ~S,an x
n

is

convergent if 0=#<1. Then a large number of interesting results

have been established connecting the increase of an , as n -*-<», and

that off(%) = 2a„#
n as % -»- 1. The fundamental result is : if a„ ~ Cbn ,

or, more generally, if (ch + a2 + . . + an) ~ C (fii + b2 + • • + bn), and

f (x) = S <&„#", <? (#) = S &m#", £Ae»

From this theorem it may be deduced that

^-ft« + A«)~i^F§)'(Tb)-'(I'M
Of further results the following is typical : if

an ~ np/nln ... lm-xn (L«)8 ••• (4t+*«)
s
*,

then

i^)~r(W{(i-aO*+1

if jp>0, #4=1: but

if^ = 0, q < 1 (if j» < or p = 0, g > 1, then 2 aH is convergent).

Thus, e.g.
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As specimens of further results of this character we may quote

^ + a- + ...^(_I_) (a>1))

2 e"/
!" a" = e2 {M/(l - #)} (M ~ l).

Many similar results have been established about series otber than

power series: thus

a" 1 . / 1 \

1-a* l-w \l-x)'

As an example of a more precise result we may quote the formula

2l^ = it(^)- 1
}
+ 0{(1 -^-

[See

Bromwich, Infinite series, pp. 131 et seq., 171 et seq.
;

Le Roy, Bulletin des Sciences Mathematiques, t. 24, pp. 245 et seq.
;

Lasker, Phil. Trans. Boy. Soc, (A), vol. 196, p. 433

;

Pringsheim, Acta Mathematical, t. 28, p. 1

;

Barnes, Proc. Lond. Math. Soc, vol. 4, p. 284
;
Quarterly Journal,

vol. 37, p. 289
;

Hardy, Proc. Lond. Math. Soc, vol. 3, p. 381 ; ibid., vol. 5, p. 197
;

ibid., vol. 5, p. 342;

where further references will be found. These writers also consider

the extensions of such results to the field of the complex variable.]
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APPENDIX III.

SOME NUMERICAL ILLUSTRATIONS.

Mr J. Jackson, scholar of Trinity College, has been kind enough to

calculate for me the following numerical results, which will, I think,

be found instructive as comments on some of the matters dealt with in

the body of this tract and in Appendix II. It will of course be under-

stood that, except in one or two instances, they are approximations

and sometimes quite rough approximations.

1. Table of the functions logx, log log x, log log log x, etc.

X
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2. Table of the functions e°, e"°, e° , etc.

X
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4. Table to illustrate the convergence of the series

(1) 2
3 n log n (log log nf'

(4) i-
s
(s=l-5).

i n"
v '

(7)
f«»

(s=10°)-

(2) 2
2 n (log nf

(5) !-.(«= 2).

(8) S,xn {x = -9).

o

(3) 2-
8 (s =ri).

(6) f^(-lO).

(9) 2 a("(a; = -5).

(10) 2 *(*=!). (11) 1+A + _L + .... (12) l +~+ w +

(13) 2«"(«=-9). (14) 2a*
a
(ar=-5).

o o

(16) —,+—
5 + -;+..

I
1 22 33

(15) 2 #" (a = 1).
o
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Such a series as (7) is of course exceedingly rapidly convergent at

first, i.e. a very few terms suffice to give the sum correctly to a con-

siderable number of places ; but if the sums are wanted to a very large

number of places, even the series (8) proves to be far more practicable.

Mr William Shanks (Proc. Roy. Soc, vol. 21, p. 318) calculated

the value of * to 707 places of decimals from Machin's formula

-"S-sf53
+

5 . 5
6

-*o.. ...).
V239 3 . 2393

He does not state the number of terms he found it necessary to use,

but, in a previous calculation to 530 places, used 747 terms of the

first and 219 terms of the second series. He also (ibid., vol. 6, p. 397)

calculated e to 205 places from the series (11).

5. Table to illustrate the divergence of the series

(1)

(3)

(5)

log log 3 log log 4

1 + — +—

+

n/2 Jl
1 1

+ ...

2 log 2 3 log 3

(2)

(6)

log 2 log 3

(4) 1+ | +
J
+

1

3 log 3 log log 3 4 log 4 log log 4

'

Series



62 SOME NUMERICAL RESULTS

(ii) The equation e°* = a:
1"10 has a root somewhere near 357,500.

(iii) The equation <f = 10wxwe
loLOxU>

has a root near 64'7. The

root differs by less than 10-26 from the corresponding root of e°= lO'V.
The corresponding root of e* = x10

is about 35'8.

(iv) The positive roots of a? = 1,000,000 and ^= 101-000-000 are

approximately 2
-

68 and 7'11.

(v) If a;
10 = lO^, then for x = 100, y = 20 ; and for x = 1010

, y = 100.

If #lolo = lO10
*, then for x= 100, y= 10-30 ; for x= 1010

, y = 11 ; and

for«=10
10l

°, # = 20.

If xwV>1°= lO1"
10
", thenfbr«=10w

, ^ = 10 + (4-3xl0-n); for # = 10
lol

°,

y = 10 + (43 x 10-10

) ; and for x = lO
1010

", # = 10-30.

7. #0?«e numbers of physics.

The distance to a Centauri is roughly 26,000,000,000,000 miles or

1'65 x 1018 inches. The number of inches lies between 19 ! and 20! and

is approximately equal to e
e or 16

£e

. Again, writing 15 letters to the

inch (an average size in print) a line to the star would be sufficient

for the writing at length of io2
'47 * 10

. The latter number is approxi-

mately equal to (14 x 1017
) !, ef"*, or (io™* 1"

12

)^.

If we take the distance to the end of the visible universe to be that

through which light travels in 10,000 years, we find that this distance

when expressed in wave-lengths of sodium light is measured roughly

by the numbers

1-6 xlO26
, 26!, /'10

, (53'6)
ee

,
3-293

'293
'29

.

If we assume the average distance between the centres of two

adjacent molecules of the earth's substance to be 10~8 cm., we find

that the number of molecules in the earth is roughly

10-8 xlO50
, 42!, Z77

, (2333)
e<!

,
3-56s

^'x
.
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